Westborough, MA, United States
Westborough, MA, United States

Time filter

Source Type

Patent
Fujifilm Co. and United Medical Systems | Date: 2013-06-10

A system and method of labeling orthogonal or otherwise spatially related image views and related images is provided. The present invention provides automated progression for the labeling of vertebral and inter-vertebral regions, propagation of labels between views and images within a series, centering of label regions relative to the spine, circular lists of predefined labels, and label displays for individual slices of an orthogonal or axial view as a user scrolls through the plurality of image slices of the given view. In a further aspect, the present invention provides automated labeling of vertebral and inter-vertebral regions when a user provides labels for the adjacent two inter-vertebral or vertebral regions.


Patent
United Medical Systems and Fujifilm Co. | Date: 2010-04-14

A method of surgical modeling is disclosed. A set of related two-dimensional (2D) anatomical images is displayed. A plurality of anatomical landmarks is identified on the set of related 2D anatomical images. A three-dimensional (3D) representation of at least one prosthesis is scaled to match a scale of the 2D anatomical images based at least in part on a relationship between the anatomical landmarks. 3D information from the at least one prosthesis along with information based on at least one of the plurality of anatomical landmarks is utilized to create procedure-based information. A system for surgical modeling is also disclosed. The system has a prosthesis knowledge-based information system, a patient anatomical-based information system, a user interface, and a controller. The controller has an anatomical landmark identifier, a prosthesis-to-anatomical-feature relator, and a procedure modeler.


Patent
Fujifilm Co. and United Medical Systems | Date: 2014-07-14

The present invention is directed in general to imaging technologies and more particularly to medical imaging and picture archiving and communication systems (PACS) having an image display wherein system features and functions are provided to a user via active overlays located over displayed images. A system and method are provided to imbed an ability to interact with an image by activating traditional annotations that are displayed in conjunction with an image in a PACS. Users are able to access program functionalities in an improved, quicker, accurate and more intuitive means. More specifically, the present invention relates to providing the capability to customize multiple context menus, and flatten the command hierarchy of an imaging system. The present invention also provides the ability to overload current text and graphic annotations that are already displayed within an image of interest.


Kwong L.N.,University of Houston | Davies M.A.,United Medical Systems | Davies M.A.,University of Houston
Oncogene | Year: 2014

The treatment of melanoma, the most aggressive form of skin cancer, is being revolutionized by the development of personalized targeted therapy approaches. Mutant-selective BRAF inhibitors and MEK inhibitors have demonstrated impressive clinical results in molecularly selected patients. However, emerging understanding of the molecular heterogeneity of this disease and the identification of multiple mechanisms of resistance to targeted therapies strongly support the rationale for combinatorial approaches. In this review, we will discuss the preclinical and clinical studies that are testing leading hypotheses and emerging combinatorial strategies for the future. © 2014 Macmillan Publishers Limited.


Hernandez-Aya L.F.,University of Miami | Gonzalez-Angulo A.M.,United Medical Systems
Oncologist | Year: 2011

The phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) network plays a key regulatory function in cell survival, proliferation, migration, metabolism, angiogenesis, and apoptosis. Genetic aberrations found at different levels, either with activation of oncogenes or inactivation of tumor suppressors, make this pathway one of the most commonly disrupted in human breast cancer. The PI3K-dependent phosphorylation and activation of the serine/threonine kinase AKT is a key activator of cell survival mechanisms. The activation of the oncogene PIK3CA and the loss of regulators of AKT including the tumor suppressor gene PTEN are mutations commonly found in breast tumors. AKT relieves the negative regulation ofmTORto activate protein synthesis and cell proliferation through S6K and 4EBP1. The common activation of the PI3K pathway in breast cancer has led tothe development of compounds targeting the effector mechanisms of the pathway including selective and pan-PI3K/pan-AKT inhibitors, rapamycin analogs for Mtor inhibition, and TOR-catalytic subunit inhibitors. The influences of other oncogenic pathways such as Ras-Raf-Mek on the PI3K pathway and the known feedback mechanisms of activation have prompted the use of compounds with broader effect at multiple levels and rational combination strategies to obtain a more potent antitumor activity and possibly a meaningful clinical effect. Here, we review the biology of the network, its role in the development and progression of breast cancer, and the evaluation of targeted therapies in clinical trials. © AlphaMed Press.


Davies M.A.,United Medical Systems
Cancer Discovery | Year: 2014

Paradoxical activation of the mitogen-activated protein kinase pathway can cause secondary malignancies in patients treated with inhibitors of BRAF V600 proteins. Characterization of a patient with concurrent BRAF -mutant melanoma and NRAS -mutant leukemia treated intermittently with combined BRAF and MEK inhibition provides new insights into the potential clinical and molecular effects of this therapeutic strategy. © 2014 American Association for Cancer Research.


Lannon C.M.,United Medical Systems
Pediatrics | Year: 2013

Multiple gaps exist in health care quality and outcomes for children, who receive <50% of recommended care. The American Board of Pediatrics has worked to develop an improvement network model for pediatric subspecialties as the optimal means to improve child health outcomes and to allow subspecialists to meet the performance in practice component of Maintenance of Certification requirements. By using successful subspecialty initiatives as exemplars, and features of the Institute for Healthcare Improvement's Breakthrough Series model, currently 9 of 14 pediatric subspecialties have implemented collaborative network improvement efforts. Key components include a common aim to improve care; national multicenter prospective collaborative improvement efforts; reducing unnecessary variation by identifying, adopting, and testing best practices; use of shared, valid, high-quality real-time data; infrastructure support to apply improvement science; and public sharing of outcomes. As a key distinguisher from time-limited collaboratives, ongoing pediatric collaborative improvement networks begin with a plan to persist until aims are achieved and improvement is sustained. Additional evidence from within and external to health care has accrued to support the model since its proposal in 2002, including the Institute of Medicine's vision for a Learning Healthcare System. Required network infrastructure systems and capabilities have been delineated and can be used to accelerate the spread of the model. Pediatric collaborative improvement networks can serve to close the quality gap, engage patients and caregivers in shared learning, and act as laboratories for accelerated translation of research into practice and new knowledge discovery, resulting in improved care and outcomes for children.


Davies M.A.,United Medical Systems
Cancer Journal | Year: 2012

The PI3K (phosphatidylinositol 3-kinase)-AKT pathway is one of the most important signaling networks in cancer. There is growing evidence that activation of this pathway plays a significant role in melanoma, frequently in the setting of concurrent activation of RAS-RAF-MEK-ERK signaling. This evidence includes the identification of genetic and epigenetic events that activate this pathway in melanoma cell lines and clinical specimens. In addition, functional experiments have demonstrated important roles for the PI3K-AKT pathway in both melanoma initiation and therapeutic resistance. The availability of many inhibitors against the PI3K-AKT pathway is rapidly leading to the development of trials that will ultimately determine its clinical significance in this disease. The rational development of such therapies will be facilitated by strategies that utilize the growing understanding of the complexity of the regulation and roles of this pathway. Copyright © 2012 by Lippincott Williams &Wilkins.


Stefater 3rd. J.A.,United Medical Systems
Blood | Year: 2013

The treatment of festering wounds is one of the most important aspects of medical care. Macrophages are important components of wound repair, both in fending off infection and in coordinating tissue repair. Here we show that macrophages use a Wnt-Calcineurin-Flt1 signaling pathway to suppress wound vasculature and delay repair. Conditional mutants deficient in both Wntless/GPR177, the secretory transporter of Wnt ligands, and CNB1, the essential component of the nuclear factor of activated T cells dephosporylation complex, displayed enhanced angiogenesis and accelerated repair. Furthermore, in myeloid-like cells, we show that noncanonical Wnt activates Flt1, a naturally occurring inhibitor of vascular endothelial growth factor-A-mediated angiogenesis, but only when calcineurin function is intact. Then, as expected, conditional deletion of Flt1 in macrophages resulted in enhanced wound angiogenesis and repair. These results are consistent with the published link between enhanced angiogenesis and enhanced repair, and establish novel therapeutic approaches for treatment of wounds.


Margolis P.A.,United Medical Systems | Seid M.,United Medical Systems
Pediatrics | Year: 2013

Despite significant gains by pediatric collaborative improvement networks, the overall US system of chronic illness care does not work well. A new paradigm is needed: a Collaborative Chronic Care Network (C3N). A C3N is a network-based production system that harnesses the collective intelligence of patients, clinicians, and researchers and distributes the production of knowledge, information, and know-how over large groups of people, dramatically accelerating the discovery process. A C3N is a platform of "operating systems" on which interconnected processes and interventions are designed, tested, and implemented. The social operating system is facilitated by community building, engaging all stakeholders and their expertise, and providing multiple ways to participate. Standard progress measures and a robust information technology infrastructure enable the technical operating system to reduce unwanted variation and adopt advances more rapidly. A structured approach to innovation design provides a scientific operating system or "laboratory" for what works and how to make it work. Data support testing and research on multiple levels: comparative effectiveness research for populations, evaluating care delivery processes at the care center level, and N-of-1 trials and other methods to select the best treatment of individual patient circumstances. Methods to reduce transactional costs to participate include a Federated IRB Model in which centers rely on a protocol approved at 1 central institutional review board and a "commons framework" for organizational copyright and intellectual property concerns. A fully realized C3N represents a discontinuous leap to a self-developing learning health system capable of producing a qualitatively different approach to improving health.

Loading United Medical Systems collaborators
Loading United Medical Systems collaborators