Time filter

Source Type

Sainte-Foy-lès-Lyon, France

Morignat E.,Unite Epidemiologie Du Laboratoire Of Lyon | Perrin J.-B.,Direction generale de lalimentation DGAL | Gay E.,Unite Epidemiologie Du Laboratoire Of Lyon | Vinard J.-L.,Unite Epidemiologie Du Laboratoire Of Lyon | And 2 more authors.
PLoS ONE | Year: 2014

Objectives: While several studies have highlighted and quantified human mortality during the major heat waves that struck Western Europe in 2003 and 2006, the impact on farm animals has been overlooked. The aim of this study was to assess the effect of these two events on cattle mortality in France, one of the most severely impacted countries. Methods: Poisson regressions were used to model the national baseline for cattle mortality between 2004 and 2005 and predict the weekly number of expected deaths in 2003 and 2006 for the whole cattle population and by subpopulation based on age and type of production. Observed and estimated values were compared to identify and quantify excess mortality. The same approach was used at a departmental scale (a French department being an administrative and territorial division) to assess the spatio-temporal evolution of the mortality pattern. Results: Overall, the models estimated relative excess mortality of 24% [95% confidence interval: 22-25%] for the two-week heat wave of 2003, and 12% [11-14%] for the three-week heat wave of 2006. In 2003, most cattle subpopulations were impacted during the heat wave and some in the following weeks too. In 2006, cattle subpopulations were impacted for a limited time only, with no excess mortality at the beginning or after the heat wave. No marked differences in cattle mortality were found among the different subpopulations by age and type of production. The implications of these results for risk prevention are discussed. © 2014 Morignat et al. Source

Bronner A.,Unite Epidemiologie Du Laboratoire Of Lyon | Henaux V.,Unite Epidemiologie Du Laboratoire Of Lyon | Vergne T.,CIRAD - Agricultural Research for Development | Vergne T.,Laboratoire Of Sante Animale Of Maisons Alfort | And 5 more authors.
PLoS ONE | Year: 2013

The mandatory bovine abortion notification system in France aims to detect as soon as possible any resurgence of bovine brucellosis. However, under-reporting seems to be a major limitation of this system. We used a unilist capture-recapture approach to assess the sensitivity, i.e. the proportion of farmers who reported at least one abortion among those who detected such events, and representativeness of the system during 2006-2011. We implemented a zero-inflated Poisson model to estimate the proportion of farmers who detected at least one abortion, and among them, the proportion of farmers not reporting. We also applied a hurdle model to evaluate the effect of factors influencing the notification process. We found that the overall surveillance sensitivity was about 34%, and was higher in beef than dairy cattle farms. The observed increase in the proportion of notifying farmers from 2007 to 2009 resulted from an increase in the surveillance sensitivity in 2007/2008 and an increase in the proportion of farmers who detected at least one abortion in 2008/2009. These patterns suggest a raise in farmers' awareness in 2007/2008 when the Bluetongue Virus (BTV) was detected in France, followed by an increase in the number of abortions in 2008/2009 as BTV spread across the country. Our study indicated a lack of sensitivity of the mandatory bovine abortion notification system, raising concerns about the ability to detect brucellosis outbreaks early. With the increasing need to survey the zoonotic Rift Valley Fever and Q fever diseases that may also cause bovine abortions, our approach is of primary interest for animal health stakeholders to develop information programs to increase abortion notifications. Our framework combining hurdle and ZIP models may also be applied to estimate the completeness of other clinical surveillance systems. © 2013 Bronner et al. Source

Morignat E.,Unite Epidemiologie Du Laboratoire Of Lyon | Gay E.,Unite Epidemiologie Du Laboratoire Of Lyon | Vinard J.-L.,Unite Epidemiologie Du Laboratoire Of Lyon | Calavas D.,Unite Epidemiologie Du Laboratoire Of Lyon | Henaux V.,Unite Epidemiologie Du Laboratoire Of Lyon
Environmental Research | Year: 2015

In the context of climate change, the frequency and severity of extreme weather events are expected to increase in temperate regions, and potentially have a severe impact on farmed cattle through production losses or deaths. In this study, we used distributed lag non-linear models to describe and quantify the relationship between a temperature-humidity index (THI) and cattle mortality in 12 areas in France. THI incorporates the effects of both temperature and relative humidity and was already used to quantify the degree of heat stress on dairy cattle because it does reflect physical stress deriving from extreme conditions better than air temperature alone. Relationships between daily THI and mortality were modeled separately for dairy and beef cattle during the 2003-2006 period. Our general approach was to first determine the shape of the THI-mortality relationship in each area by modeling THI with natural cubic splines. We then modeled each relationship assuming a three-piecewise linear function, to estimate the critical cold and heat THI thresholds, for each area, delimiting the thermoneutral zone (i.e. where the risk of death is at its minimum), and the cold and heat effects below and above these thresholds, respectively. Area-specific estimates of the cold or heat effects were then combined in a hierarchical Bayesian model to compute the pooled effects of THI increase or decrease on dairy and beef cattle mortality. A U-shaped relationship, indicating a mortality increase below the cold threshold and above the heat threshold was found in most of the study areas for dairy and beef cattle. The pooled estimate of the mortality risk associated with a 1. °C decrease in THI below the cold threshold was 5.0% for dairy cattle [95% posterior interval: 4.4, 5.5] and 4.4% for beef cattle [2.0, 6.5]. The pooled mortality risk associated with a 1. °C increase above the hot threshold was estimated to be 5.6% [5.0, 6.2] for dairy and 4.6% [0.9, 8.7] for beef cattle. Knowing the thermoneutral zone and temperature effects outside this zone is of primary interest for farmers because it can help determine when to implement appropriate preventive and mitigation measures. © 2015 Elsevier Inc. Source

Discover hidden collaborations