Entity

Time filter

Source Type


Wang H.,University of Washington | Wang H.,University of Helsinki | Li Z.-Y.,University of Washington | Liu Y.,University of Washington | And 13 more authors.
Nature Medicine | Year: 2011

We have identified desmoglein-2 (DSG-2) as the primary high-affinity receptor used by adenoviruses Ad3, Ad7, Ad11 and Ad14. These serotypes represent key human pathogens causing respiratory and urinary tract infections. In epithelial cells, adenovirus binding of DSG-2 triggers events reminiscent of epithelial-to-mesenchymal transition, leading to transient opening of intercellular junctions. This opening improves access to receptors, for example, CD46 and Her2/neu, that are trapped in intercellular junctions. In addition to complete virions, dodecahedral particles (PtDds), formed by excess amounts of viral capsid proteins, penton base and fiber during viral replication, can trigger DSG-2-mediated opening of intercellular junctions as shown by studies with recombinant Ad3 PtDds. Our findings shed light on adenovirus biology and pathogenesis and may have implications for cancer therapy. © 2011 Nature America, Inc. All rights reserved. Source


Felix J.,Ghent University | Elegheert J.,Ghent University | Elegheert J.,University of Oxford | Gutsche I.,Unit of Virus Host Cell Interactions | And 10 more authors.
Structure | Year: 2013

The discovery that hematopoietic human colony stimulating factor-1 receptor (CSF-1R) can be activated by two distinct cognate cytokines, colony stimulating factor-1 (CSF-1) and interleukin-34 (IL-34), created puzzling scenarios for the two possible signaling complexes. We here employ a hybrid structural approach based on small-angle X-ray scattering (SAXS) and negative-stain EM to reveal that bivalent binding of human IL-34 to CSF-1R leads to an extracellular assembly hallmarked by striking similarities to the CSF-1:CSF-1R complex, including homotypic receptor-receptor interactions. Thus, IL-34 and CSF-1 have evolved to exploit the geometric requirements of CSF-1R activation. Our models include N-linked oligomannose glycans derived from a systematic approach resulting in the accurate fitting of glycosylated models to the SAXS data. We further show that the C-terminal region of IL-34 is heavily glycosylated and that it can be proteolytically cleaved from the IL-34:hCSF-1R complex, providing insights into its role in the functional nonredundancy of IL-34 and CSF-1. © 2013 Elsevier Ltd. Source


Beyer I.,University of Washington | Van Rensburg R.,University of Washington | Strauss R.,Danish Cancer Society | Li Z.,University of Washington | And 9 more authors.
Cancer Research | Year: 2011

The efficacy of monoclonal antibodies (mAb) used to treat solid tumors is limited by intercellular junctions which tightly link epithelial tumor cells to each another. In this study, we define a small, recombinant adenovirus serotype 3-derived protein, termed junction opener 1 (JO-1), which binds to the epithelial junction protein desmoglein 2 (DSG2). In mouse xenograft models employing Her2/neu- and EGFR-positive human cancer cell lines, JO-1 mediated cleavage of DSG2 dimers and activated intracellular signaling pathways which reduced E-cadherin expression in tight junctions. Notably, JO-1-triggered changes allowed for increased intratumoral penetration of the anti-Her2/neu mAb trastuzumab (Herceptin) and improved access to its target receptor, Her2/ neu, which is partly trapped in tight junctions. This effect translated directly into increased therapeutic efficacy of trastuzumab in mouse xenograft models using breast, gastric, and ovarian cancer cells that were Her2/neupositive. Furthermore, combining JO-1 with the EGFR-targeting mAb cetuximab (Erbitux) greatly improved therapeutic outcomes in a metastatic model of EGFR-positive lung cancer. A combination of JO-1 with an approach that triggered transient degradation of tumor stroma proteins elicited eradication of tumors. Taken together, our findings offer preclinical proof of concept to employ JO-1 in combination with mAb therapy. ©2011 AACR. Source


Akarsu H.,Unit of Virus Host Cell Interactions | Akarsu H.,Tokyo Medical University | Akarsu H.,University of Cambridge | Iwatsuki-Horimoto K.,Tokyo Medical University | And 11 more authors.
Virus Research | Year: 2011

We previously characterised the matrix 1 (M1)-binding domain of the influenza A virus NS2/nuclear export protein (NEP), reporting a critical role for the tryptophan (W78) residue that is surrounded by a cluster of glutamate residues in the C-terminal region that interacts with the M1 protein (Akarsu et al., 2003). To gain further insight into the functional role of this interaction, here we used reverse genetics to generate a series of A/WSN/33 (H1N1)-based NS2/NEP mutants for W78 or the C-terminal glutamate residues and assessed their effect on virus growth. We found that simultaneous mutations at three positions (E67S/E74S/E75S) of NS2/NEP were important for inhibition of influenza viral polymerase activity, although the W78S mutant and other glutamate mutants with single substitutions were not. In addition, double and triple substitutions in the NS2/NEP glutamine residues, which resulted in the addition of seven amino acids to the C-terminus of NS1 due to gene overlapping, resulted in virus attenuation in mice. Animal studies with this mutant suggest a potential benefit to incorporating these NS mutations into live vaccines. © 2010 Elsevier B.V. Source

Discover hidden collaborations