Time filter

Source Type

Dallabona C.,University of Parma | Diodato D.,Unit of Molecular Neurogenetics | Haack T.B.,TU Munich | Haack T.B.,Helmholtz Center Munich | And 23 more authors.
Neurology | Year: 2014

Objectives: The study was focused on leukoencephalopathies of unknown cause in order to define a novel, homogeneous phenotype suggestive of a common genetic defect, based on clinical and MRI findings, and to identify the causal genetic defect shared by patients with this phenotype. Methods: Independent next-generation exome-sequencing studies were performed in 2 unrelated patients with a leukoencephalopathy. MRI findings in these patients were compared with available MRIs in a database of unclassified leukoencephalopathies; 11 patients with similar MRI abnormalities were selected. Clinical and MRI findings were investigated. Results: Next-generation sequencing revealed compound heterozygous mutations in AARS2 encoding mitochondrial alanyl-tRNA synthetase in both patients. Functional studies in yeast confirmed the pathogenicity of the mutations in one patient. Sanger sequencing revealed AARS2 mutations in 4 of the 11 selected patients. The 6 patients with AARS2 mutations had childhoodto adulthood-onset signs of neurologic deterioration consisting of ataxia, spasticity, and cognitive decline with features of frontal lobe dysfunction. MRIs showed a leukoencephalopathy with striking involvement of left-right connections, descending tracts, and cerebellar atrophy. All female patients had ovarian failure. None of the patients had signs of a cardiomyopathy. Conclusions: Mutations in AARS2 have been found in a severe form of infantile cardiomyopathy in 2 families. We present 6 patients with a new phenotype caused by AARS2 mutations, characterized by leukoencephalopathy and, in female patients, ovarian failure, indicating that the phenotypic spectrum associated with AARS2 variants is much wider than previously reported. © 2014 American Academy of Neurology.


Brunetti D.,Unit of Molecular Neurogenetics | Dusi S.,Unit of Molecular Neurogenetics | Morbin M.,Irccs Foundation Neurological Institute C Besta | Uggetti A.,Irccs Foundation Neurological Institute C Besta | And 9 more authors.
Human Molecular Genetics | Year: 2012

Neurodegeneration with brain iron accumulation (NBIA) comprises a group of neurodegenerative disorders characterized by high brain content of iron and presence of axonal spheroids. Mutations in the PANK2 gene, which encodes pantothenate kinase 2, underlie an autosomal recessive inborn error of coenzyme A metabolism, called pantothenate kinase-associated neurodegeneration (PKAN). PKAN is characterized by dystonia, dysarthria, rigidity and pigmentary retinal degeneration. The pathogenesis of this disorder is poorly understood and, although PANK2 is a mitochondrial protein, perturbations in mitochondrial bioenergetics have not been reported. A knock-out (KO) mouse model of PKAN exhibits retinal degeneration and azoospermia, but lacks any neurological phenotype. The absence of a clinical phenotype has partially been explained by the different cellular localization of the human and murine PANK2 proteins. Here we demonstrate that the mouse Pank2 protein localizes to mitochondria, similar to its human orthologue. Moreover, we show that Pank2-defective neurons derived from KO mice have an altered mitochondrial membrane potential, a defect further corroborated by the observations of swollen mitochondria at the ultra-structural level and by the presence of defective respiration. © The Author 2012.Published by Oxford University Press.


PubMed | Unit of Molecular Neurogenetics
Type: Journal Article | Journal: American journal of human genetics | Year: 2012

Dysfunction of mitochondrial respiration is an increasingly recognized cause of isolated hypertrophic cardiomyopathy. To gain insight into the genetic origin of this condition, we used next-generation exome sequencing to identify mutations in MTO1, which encodes mitochondrial translation optimization 1. Two affected siblings carried a maternal c.1858dup (p.Arg620Lysfs()8) frameshift and a paternal c.1282G>A (p.Ala428Thr) missense mutation. A third unrelated individual was homozygous for the latter change. In both humans and yeast, MTO1 increases the accuracy and efficiency of mtDNA translation by catalyzing the 5-carboxymethylaminomethylation of the wobble uridine base in three mitochondrial tRNAs (mt-tRNAs). Accordingly, mutant muscle and fibroblasts showed variably combined reduction in mtDNA-dependent respiratory chain activities. Reduced respiration in mutant cells was corrected by expressing a wild-type MTO1 cDNA. Conversely, defective respiration of a yeast mto1 strain failed to be corrected by an Mto1(Pro622) variant, equivalent to human MTO1(Arg620Lysfs8), whereas incomplete correction was achieved by an Mto1(Ala431Thr) variant, corresponding to human MTO1(Ala428Thr). The respiratory yeast phenotype was dramatically worsened in stress conditions and in the presence of a paromomycin-resistant (P(R)) mitochondrial rRNA mutation. Lastly, in vivo mtDNA translation was impaired in the mutant yeast strains.

Loading Unit of Molecular Neurogenetics collaborators
Loading Unit of Molecular Neurogenetics collaborators