Time filter

Source Type

Figueroa K.P.,University of Utah | Paul S.,University of Utah | Cali T.,University of Padua | Lopreiato R.,University of Padua | And 10 more authors.
DMM Disease Models and Mechanisms | Year: 2016

The shaker rat is an X-linked recessive spontaneous model of progressive Purkinje cell (PC) degeneration exhibiting a shaking ataxia and wide stance. Generation of Wistar Furth (WF)/Brown Norwegian (BN) F1 hybrids and genetic mapping of F2 sib-sib offspring using polymorphic markers narrowed the candidate gene region to 26 Mbp denoted by the last recombinant genetic marker DXRat21 at 133 Mbp to qter (the end of the long arm). In the WF background, the shaker mutation has complete penetrance, results in a stereotypic phenotype and there is a narrow window for age of disease onset; by contrast, the F2 hybrid phenotypewas more varied, with a later age of onset and likely non-penetrance of the mutation. By deep RNA-sequencing, five variants were found in the candidate region; four were novel without known annotation. One of the variants caused an arginine (R) to cysteine (C) change at codon 35 of the ATPase, Ca2+ transporting, plasma membrane 3 (Atp2b3) gene encoding PMCA3 that has high expression in the cerebellum. The variant was well supported by hundreds of overlapping reads, and was found in 100% of all affected replicas and 0% of the wild-type (WT) replicas. The mutation segregated with disease in all affected animals and the amino acid change was found in an evolutionarily conserved region of PMCA3. Despite strong genetic evidence for pathogenicity, in vitro analyses of PMCA3R35C function did not show any differences to WT PMCA3. Because Atp2b3 mutation leads to congenital ataxia in humans, the identified Atp2b3 missense change in the shaker rat presents a good candidate for the shaker rat phenotype based on genetic criteria, but cannot yet be considered a definite pathogenic variant owing to lack of functional changes. © 2016. Published by The Company of Biologists Ltd. Source

Steenweg M.E.,VU University Amsterdam | Ghezzi D.,Unit of Molecular Neurogenetics | Haack T.,Helmholtz Center Munich | Haack T.,TU Munich | And 13 more authors.
Brain | Year: 2012

In the large group of genetically undetermined infantile-onset mitochondrial encephalopathies, multiple defects of mitochondrial DNA-related respiratory-chain complexes constitute a frequent biochemical signature. In order to identify responsible genes, we used exome-next-generation sequencing in a selected cohort of patients with this biochemical signature. In an isolated patient, we found two mutant alleles for EARS2, the gene encoding mitochondrial glutamyl-tRNA synthetase. The brain magnetic resonance imaging of this patient was hallmarked by extensive symmetrical cerebral white matter abnormalities sparing the periventricular rim and symmetrical signal abnormalities of the thalami, midbrain, pons, medulla oblongata and cerebellar white matter. Proton magnetic resonance spectroscopy showed increased lactate. We matched this magnetic resonance imaging pattern with that of a cohort of 11 previously selected unrelated cases. We found mutations in the EARS2 gene in all. Subsequent detailed clinical and magnetic resonance imaging based phenotyping revealed two distinct groups: mild and severe. All 12 patients shared an infantile onset and rapidly progressive disease with severe magnetic resonance imaging abnormalities and increased lactate in body fluids and proton magnetic resonance spectroscopy. Patients in the 'mild' group partially recovered and regained milestones in the following years with striking magnetic resonance imaging improvement and declining lactate levels, whereas those of the 'severe' group were characterized by clinical stagnation, brain atrophy on magnetic resonance imaging and persistent lactate increases. This new neurological disease, early-onset leukoencephalopathy with thalamus and brainstem involvement and high lactate, is hallmarked by unique magnetic resonance imaging features, defined by a peculiar biphasic clinical course and caused by mutations in a single gene, EARS2, expanding the list of medically relevant defects of mitochondrial DNA translation. © 2012 The Author. Source

Cali T.,University of Padua | Lopreiato R.,University of Padua | Shimony J.,University of Washington | Vineyard M.,University of Washington | And 6 more authors.
Journal of Biological Chemistry | Year: 2015

The particular importance of Ca2+ signaling to neurons demands its precise regulation within their cytoplasm. Isoform 3 of the plasma membrane Ca2+ ATPase (the PMCA3 pump), which is highly expressed in brain and cerebellum, plays an important role in the regulation of neuronal Ca2+. A genetic defect of the PMCA3 pump has been described in one family with X-linked congenital cerebellar ataxia. Here we describe a novel mutation in the ATP2B3 gene in a patient with global developmental delay, generalized hypotonia and cerebellar ataxia. The mutation (a R482H replacement) impairs the Ca2+ ejection function of the pump. It reduces the ability of the pump expressed in model cells to control Ca2+ transients generated by cell stimulation and impairs its Ca2+ extrusion function under conditions of low resting cytosolic Ca2+ as well. In silico analysis of the structural effect of the mutation suggests a reduced stabilization of the portion of the pump surrounding the mutated residue in the Ca2+-bound state. The patient also carries two missense mutations in LAMA1, encoding laminin subunit 1α. Onthe basis of the family pedigree of the patient, the presence of both PMCA3 and laminin subunit 1α mutations appears to be necessary for the development of the disease. Considering the observed defect in cellularCa2+ homeostasisandthe previous finding that PMCAs act as digenic modulators in Ca2+-linked pathologies, the PMCA3 dysfunction along with LAMA 1 mutations could act synergistically to cause the neurological phenotype. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc. Published in the U.S.A. Source

Minnone G.,Bambino Gesu Childrens Hospital | Frank C.,National Center for Rare Diseases | Aiello C.,Unit of Molecular Medicine for Neuromuscular and Neurodegenerative Disorders | Cutarelli A.,National Center for Rare Diseases | And 9 more authors.
Molecular and Cellular Neuroscience | Year: 2013

Megalencephalic leukoencephalopathy with subcortical cysts (MLC) is a rare congenital leukodystrophy characterized by macrocephaly, subcortical cysts and demyelination. The majority of patients harbor mutations in the MLC1 gene encoding for a membrane protein with largely unknown function. Mutations in MLC1 hamper its normal trafficking and distribution in cell membranes, leading to enhanced degradation. MLC1 protein is highly expressed in brain astrocytes and in circulating blood cells, particularly monocytes. We used these easily available cells and monocyte-derived macrophages from healthy donors and MLC1-mutated patients to study MLC1 expression and localization, and to investigate how defective MLC1 mutations may affect macrophage functions. RT-PCR, western blot and immunofluorescence analyses show that MLC1 is expressed in both monocytes and macrophages, and its biosynthesis follows protein trafficking between endoplasmic reticulum and trans-Golgi network and the secretory pathway to the cell surface. MLC1 is transported along the endosomal recycling pathway passing through Rab5. + and Rab11A. +. vesicles before lysosomal degradation. Alterations in MLC1 trafficking and distribution were observed in macrophages from MLC1-mutated patients, which also showed changes in the expression and localization of several proteins involved in plasma membrane permeability, ion and water homeostasis and ion-regulated exocytosis. As a consequence of these alterations, patient-derived macrophages show abnormal cell morphology and intracellular calcium influx and altered response to hypo-osmotic stress. Our results suggest that blood-derived macrophages may give relevant information on MLC1 function and may be considered as valid biomarkers for MLC diagnosis and for investigating therapeutic strategies aimed to restore MLC1 trafficking in patient cells. © 2013 Elsevier Inc. Source

Zanni G.,Unit of Molecular Medicine for Neuromuscular and Neurodegenerative Disorders | Kalscheuer V.M.,Max Planck Institute for Molecular Genetics | Friedrich A.,University of Salzburg | Barresi S.,Unit of Molecular Medicine for Neuromuscular and Neurodegenerative Disorders | And 11 more authors.
Human Mutation | Year: 2015

RPL10 encodes ribosomal protein L10 (uL16), a highly conserved multifunctional component of the large ribosomal subunit, involved in ribosome biogenesis and function. Using X-exome resequencing, we identified a novel missense mutation (c.191C>T; p.(A64V)) in the N-terminal domain of the protein, in a family with two affected cousins presenting with X-linked intellectual disability, cerebellar hypoplasia, and spondylo-epiphyseal dysplasia (SED). We assessed the impact of the mutation on the translational capacity of the cell using yeast as model system. The mutation generates a functional ribosomal protein, able to complement the translational defects of a conditional lethal mutation of yeast rpl10. However, unlike previously reported mutations, this novel RPL10 missense mutation results in an increase in the actively translating ribosome population. Our results expand the mutational and clinical spectrum of RPL10 identifying a new genetic cause of SED and highlight the emerging role of ribosomal proteins in the pathogenesis of neurodevelopmental disorders. © 2015 Wiley Periodicals, Inc. Source

Discover hidden collaborations