Time filter

Source Type

Camisaschi C.,Unit of Immunotherapy of Human Tumor | De Filippo A.,Unit of Immunotherapy of Human Tumor | Beretta V.,Unit of Immunotherapy of Human Tumor | Vergani B.,University of Milan Bicocca | And 9 more authors.
Journal of Investigative Dermatology | Year: 2014

Plasmacytoid dendritic cells (pDCs) at tumor sites are often tolerogenic. Although pDCs initiate innate and adaptive immunity upon Toll-like receptor (TLR) triggering by pathogens, TLR-independent signals may be responsible for pDC activation and immune suppression in the tumor inflammatory environment. To identify molecules that are potentially involved in alternative pDC activation, we explored the expression and function of lymphocyte activation gene 3 (LAG-3) in human pDCs. In this report, we showed the expression of LAG-3 on the cell surface of a subset of circulating human pDCs. LAG-3+ pDCs exhibited a partially mature phenotype and were enriched at tumor sites in samples from melanoma patients. We found that LAG-3 interacted with major histocompatibility complex class II (MHC-II) to induce TLR-independent activation of pDCs with limited IFNα and enhanced IL-6 production. This in vitro cytokine profile of LAG-3-activated pDCs paralleled that of tumor-associated pDCs analyzed ex vivo. By confocal microscopy, LAG-3+ pDCs detected in melanoma-invaded lymph nodes (LNs) stained positive for IL-6 and preferentially localized near melanoma cells. These results suggest that LAG-3-mediated activation of pDCs takes place in vivo at tumor sites, and it is in part responsible for directing an immune-suppressive environment. © 2014 The Society for Investigative Dermatology.

Apetoh L.,French Institute of Health and Medical Research | Apetoh L.,Center Georges Francois Leclerc | Apetoh L.,University of Burgundy | Smyth M.J.,QIMR Berghofer Medical Research Institute | And 61 more authors.
OncoImmunology | Year: 2015

Whereas preclinical investigations and clinical studies have established that CD8+ T cells can profoundly affect cancer progression, the underlying mechanisms are still elusive. Challenging the prevalent view that the beneficial effect of CD8+ T cells in cancer is solely attributable to their cytotoxic activity, several reports have indicated that the ability of CD8+T cells to promote tumor regression is dependent on their cytokine secretion profile and their ability to self-renew. Evidence has also shown that the tumor microenvironment can disarm CD8+ T cell immunity, leading to the emergence of dysfunctional CD8+ T cells. The existence of different types of CD8+ T cells in cancer calls for a more precise definition of the CD8+ T cell immune phenotypes in cancer and the abandonment of the generic terms “pro-tumor” and “antitumor.” Based on recent studies investigating the functions of CD8+ T cells in cancer, we here propose some guidelines to precisely define the functional states of CD8+T cells in cancer. © 2015 Taylor & Francis Group, LLC.

Castelli C.,Unit of Immunotherapy of Human Tumor | Rivoltini L.,Unit of Immunotherapy of Human Tumor | Rodolfo M.,Unit of Immunotherapy of Human Tumor | Tazzari M.,Unit of Immunotherapy of Human Tumor | And 2 more authors.
Cancer Immunology, Immunotherapy | Year: 2015

Targeted therapies were rationally designed to inhibit molecular pathways in tumor cells critically involved in growth and survival; however, many drugs used in targeted therapies may affect the immune system. In addition, selected conventional chemotherapeutic agents have also been reported to be endowed with direct or indirect effects on immunity, for instance via immunogenic death of tumors. Thus, cancer therapies may have off-target effects, some of which are directed to the immune system. Here, we will review some of these effects in specific therapeutic approaches. We will examine the modulation of the immune contexture in human sarcoma and melanoma induced by anti-angiogenic therapies and by BRAF inhibitors, respectively. We will then discuss how the anti-tumor agent trabectedin is selectively cytotoxic to cells of the monocytic-macrophage lineage and how these immune-related effects can be part of the response to treatment. © 2014, Springer-Verlag Berlin Heidelberg.

Discover hidden collaborations