Time filter

Source Type

Póvoa e Meadas, Portugal

Corduneanu O.,University of Coimbra | Chiorcea-Paquim A.-M.,University of Coimbra | Fiuza S.M.,Unidade I and D Quimica Fisica Molecular | Marques M.P.M.,Unidade I and D Quimica Fisica Molecular | Oliveira-Brett A.M.,University of Coimbra

Polynuclear Pd(II) complexes with biogenic polyamines present great potential clinical importance, due to their antiproliferative and cytotoxic activity coupled to less severe side-effects. The adsorption process and the redox behaviour of two polynuclear palladium chelates with spermine (Spm) and spermidine (Spd), Pd(II)-Spm and Pd(II)-Spd, as well as of their ligands Spm and Spd, were studied using atomic force microscopy (AFM) and voltammetry at highly oriented pyrolytic graphite and glassy carbon electrodes. AFM revealed different adsorption patterns and degree of surface coverage, correlated with the chelate structure, concentration of the solution, applied potential and voltammetric behaviour of the Spm, Spd, Pd(II)-Spm and Pd(II)-Spd systems. The voltammetric study of Spm and Spd showed that these biogenic polyamines undergo an irreversible and pH-dependent oxidation. In acid medium the polyamines are fully protonated, rendering their oxidation more difficult. With increasing pH the oxidation potential for both Spm and Spd is shifted to less positive values, indicating a greater ease of oxidation in alkaline medium. The Pd(II)-Spm and Pd(II)-Spd complexes dissociate at high negative or high positive potentials. The application of a positive potential induced the oxidation of these Pd complexes and the formation of mixed layers of palladium oxides, Spm/Spd and Pd(II)-Spm/Pd(II)-Spd. © 2009 Elsevier B.V. All rights reserved. Source

Fiuza S.M.,Unidade I and D Quimica Fisica Molecular | Marques M.P.M.,Unidade I and D Quimica Fisica Molecular
Analytical Chemistry

The interaction of double-stranded DNA with two polynuclear Pd(II) chelates with the biogenic polyamines spermidine (Spd) and spermine (Spm), Pd(II)-Spd and Pd(II)-Spm, as well as with the free ligands Spd and Spm, was studied using atomic force microscopy (AFM) at a highly oriented pyrolytic graphite (HOPG) surface, voltammetry at a glassy carbon (GC) electrode, and gel electrophoresis. The AFM and voltammetric results showed that the interaction of Spd and Spm with DNA occurred even for a low concentration of polyamines and caused no oxidative damage to DNA. The Pd(II)-Spd and Pd(II)-Spm complexes were found to induce greater morphological changes in the dsDNA conformation, when compared with their ligands. The interaction was specific, inducing distortion and local denaturation of the B-DNA structure with release of some guanine bases. The DNA strands partially opened give rise to palladium intra-and interstrand cross-links, leading to the formation of DNA adducts and aggregates, particularly in the case of the Pd(II)-Spd complex. © 2010 American Chemical Society. Source

Discover hidden collaborations