Entity

Time filter

Source Type


Madden A.J.,University of North Carolina at Chapel Hill | Rawal S.,University of North Carolina at Chapel Hill | Sandison K.,University of North Carolina at Chapel Hill | Schell R.,University of North Carolina at Chapel Hill | And 8 more authors.
Journal of Nanoparticle Research | Year: 2014

The pharmacokinetics (PK) of carrier-mediated agents (CMA) is dependent upon the carrier system. As a result, CMA PK differs greatly from the PK of small molecule (SM) drugs. Advantages of CMAs over SMs include prolonged circulation time in plasma, increased delivery to tumors, increased antitumor response, and decreased toxicity. In theory, CMAs provide greater tumor drug delivery than SMs due to their prolonged plasma circulation time. We sought to create a novel PK metric to evaluate the efficiency of tumor and tissue delivery of CMAs and SMs. We conducted a study evaluating the plasma, tumor, liver, and spleen PK of CMAs and SMs in mice bearing subcutaneous flank tumors using standard PK parameters and a novel PK metric entitled relative distribution over time (RDI-OT), which measures efficiency of delivery. RDI-OT is defined as the ratio of tissue drug concentration to plasma drug concentration at each time point. The standard concentration versus time area under the curve values (AUC) of CMAs were higher in all tissues and plasma compared with SMs. However, 8 of 17 SMs had greater tumor RDI-OT AUC0–last values than their CMA comparators and all SMs had greater tumor RDI-OT AUC0–6 h values than their CMA comparators. Our results indicate that in mice bearing flank tumor xenografts, SMs distribute into tumor more efficiently than CMAs. Further research in additional tumor models that may more closely resemble tumors seen in patients is needed to determine if our results are consistent in different model systems. © 2014, Springer Science+Business Media Dordrecht. Source


Petschauer J.S.,University of North Carolina at Chapel Hill | Madden A.J.,University of North Carolina at Chapel Hill | Kirschbrown W.P.,University of North Carolina at Chapel Hill | Song G.,University of North Carolina at Chapel Hill | And 2 more authors.
Nanomedicine | Year: 2015

Major advances in carrier-mediated agents, which include nanoparticles, nanosomes and conjugates, have revolutionized drug delivery capabilities over the past decade. While providing numerous advantages, such as greater solubility, duration of exposure and delivery to the site of action over their small-molecule counterparts, there is substantial variability in systemic clearance and distribution, tumor delivery and pharmacologic effects (efficacy and toxicity) of these agents. This review provides an overview of factors that affect the pharmacokinetics and pharmacodynamics of carrier-mediated agents in preclinical models and patients. © 2015 Future Medicine Ltd. Source


Lucas A.T.,University of North Carolina at Chapel Hill | Madden A.J.,University of North Carolina at Chapel Hill | Zamboni W.C.,University of North Carolina at Chapel Hill | Zamboni W.C.,UNC Institute for Pharmacogenomics and Individualized Therapy | Zamboni W.C.,Lineberger Comprehensive Cancer Center
Expert Opinion on Drug Metabolism and Toxicology | Year: 2015

Introduction: Major advances in carrier-mediated agents (CMAs), which include nanoparticles and conjugates, have revolutionized drug delivery capabilities over the past decade. While providing numerous advantages such as increased exposure duration, greater solubility and delivery to tumor sites over their small molecule counterparts, there is substantial variability in how individual CMA formulations affect the pharmacology, pharmacokinetics and pharmacodynamics (efficacy and toxicity) of these agents.Areas covered: CMA formulations are complex in nature compared to their small molecule counterparts and consist of multiple components and variables that can affect the pharmacological profile. This review provides an overview of factors that affect the pharmacologic profiles observed in CMA-formulated chemotherapy, primarily in liposomal formulations, that are currently in preclinical or early clinical development.Expert opinion: Despite the numerous advantages that CMA formulations provide, their clinical use is still in its infancy. It is critical that we understand the mechanisms and effects of CMAs in navigating biological barriers and how these factors affect their biodistribution and delivery to tumors. Future studies are warranted to better understand the complex pharmacology and interaction between CMA carriers and biological systems, such as the mononuclear phagocyte system and tumor microenvironment. © 2015 © Informa UK, Ltd. Source


Wu H.,University of North Carolina at Chapel Hill | Ramanathan R.K.,University of North Carolina at Chapel Hill | Ramanathan R.K.,University of Pittsburgh | Zamboni B.A.,Carlow University | And 19 more authors.
Journal of Clinical Pharmacology | Year: 2012

S-CKD602 is a pegylated long-circulating liposomal formulation of CKD-602, a potent topoisomerase I inhibitor. A population pharmacokinetic (PK) model for encapsulated and released CKD-602 following administration of S-CKD602 was developed to assess factors that may influence S-CKD602 PK. Plasma samples from 45 patients with solid tumors were collected in a phase 1 study. S-CKD602 was administered as a 1-hour intravenous infusion with doses ranging from 0.1 to 2.5 mg/m2. Plasma concentrations of encapsulated and released CKD-602 were used to develop a population PK model using NONMEM. PK of encapsulated CKD-602 was described by a 1-compartment model with nonlinear clearance, and PK of released CKD-602 was described by a 2-compartment model with linear clearance for all patients. Covariate analysis revealed that tumor in the liver was a significant covariate for clearance of encapsulated CKD-602 and that age significantly influenced the release rate of CKD-602 from S-CKD602. Maximum elimination rate in patients with liver tumor is 1.5-fold higher compared with patients without liver tumor. Release rate of CKD-602 from S-CKD602 in patients less than 60 years old was 2.7-fold higher compared with patients 60 years old or older. These observations have potential implications in the optimal dosing of liposomal agents. © 2012 American College of Clinical Pharmacology, Inc. Source


Jensen B.C.,UNC McAllister Heart Institute | McLeod H.L.,UNC Institute for Pharmacogenomics and Individualized Therapy
Pharmacogenomics | Year: 2013

Damage to the heart can result from both traditional chemotherapeutic agents, such as doxorubicin, and newer 'targeted therapies, such as trastuzumab. This chemotherapeutic cardiotoxicity is potentially life-threatening and necessitates limiting or discontinuing an otherwise-effective cancer treatment. Clinical strategies focus on surveillance rather than prevention, although there are no specific therapies for this highly morbid adverse effect. Current models for prospectively predicting risk of chemotherapeutic cardiotoxicity are limited. Cardiotoxicity can occur idiosyncratically in patients without obvious demographic risk factors, suggesting a genetically determined susceptibility, and candidate-gene studies have identified a limited number of variants that increase risk. In this commentary we indicate a need for more powerful means to identify risk prospectively, and suggest that broad pharmacogenomic approaches may be fruitful. © 2013 Future Medicine Ltd. Source

Discover hidden collaborations