UBA Umweltbundesamt

Dessau, Germany

UBA Umweltbundesamt

Dessau, Germany

Time filter

Source Type

Dumichen E.,BAM Federal Institute of Materials Research and Testing | Eisentraut P.,BAM Federal Institute of Materials Research and Testing | Bannick C.G.,UBA Umweltbundesamt | Barthel A.-K.,UBA Umweltbundesamt | And 2 more authors.
Chemosphere | Year: 2017

In order to determine the relevance of microplastic particles in various environmental media, comprehensive investigations are needed. However, no analytical method exists for fast identification and quantification. At present, optical spectroscopy methods like IR and RAMAN imaging are used. Due to their time consuming procedures and uncertain extrapolation, reliable monitoring is difficult. For analyzing polymers Py-GC-MS is a standard method. However, due to a limited sample amount of about 0.5 mg it is not suited for analysis of complex sample mixtures like environmental samples. Therefore, we developed a new thermoanalytical method as a first step for identifying microplastics in environmental samples. A sample amount of about 20 mg, which assures the homogeneity of the sample, is subjected to complete thermal decomposition. The specific degradation products of the respective polymer are adsorbed on a solid-phase adsorber and subsequently analyzed by thermal desorption gas chromatography mass spectrometry. For certain identification, the specific degradation products for the respective polymer were selected first. Afterwards real environmental samples from the aquatic (three different rivers) and the terrestrial (bio gas plant) systems were screened for microplastics. Mainly polypropylene (PP), polyethylene (PE) and polystyrene (PS) were identified for the samples from the bio gas plant and PE and PS from the rivers. However, this was only the first step and quantification measurements will follow. © 2017 Elsevier Ltd


Richter J.,BAM Federal Institute of Materials Research and Testing | Fettig I.,UBA Umweltbundesamt | Philipp R.,BAM Federal Institute of Materials Research and Testing | Jakubowski N.,BAM Federal Institute of Materials Research and Testing | And 3 more authors.
Journal of Chromatography A | Year: 2016

Monitoring of water quality is important to control water pollution. Contamination of the aquatic system has a large effect on human health and the environment. Under the European Water Framework Directive (WFD) 2000/60/EC and the related directive on environmental quality standards (EQS) in the field of water policy 2008/105/EC, the need for sensitive reference methods was highlighted. Since tributyltin (TBT) is one of the WFD listed priority substances a method was developed which is capable to qualify and quantify the pollutant at the required low WFD EQS of 0.2ngL-1 in whole water bodies, i.e. in non-filtered water samples with dissolved organic carbon and suspended particulate matter. Therefore special attention was paid on the interaction of TBT with the suspended particulate matter and humic substances to obtain a complete representation of the pollution in surface waters. Different water samples were investigated varying the content of organic dissolved and suspended matter. Quantification was performed using species-specific isotope dilution (SSID) and gas chromatography with inductively coupled plasma mass spectrometry (GC-ICP-MS). Different sample treatment strategies were evaluated and compared. The process of internal standard addition was investigated and optimized, hence the equilibrium between internal standards and matrix is of primary importance to perform accurate SSID. Samples spiked at EQS level were analyzed with a recovery between 95 and 105 %. Additionally real surface water samples were investigated and the TBT concentration for the whole water body was determined and compared with conventional routine analysis method. © 2016 Elsevier B.V.


PubMed | BAM Federal Institute of Materials Research and Testing, French National Laboratory of Metrology and Testing and UBA Umweltbundesamt
Type: | Journal: Journal of chromatography. A | Year: 2016

Monitoring of water quality is important to control water pollution. Contamination of the aquatic system has a large effect on human health and the environment. Under the European Water Framework Directive (WFD) 2000/60/EC and the related directive on environmental quality standards (EQS) in the field of water policy 2008/105/EC, the need for sensitive reference methods was highlighted. Since tributyltin (TBT) is one of the WFD listed priority substances a method was developed which is capable to qualify and quantify the pollutant at the required low WFD EQS of 0.2ngL(-1) in whole water bodies, i.e. in non-filtered water samples with dissolved organic carbon and suspended particulate matter. Therefore special attention was paid on the interaction of TBT with the suspended particulate matter and humic substances to obtain a complete representation of the pollution in surface waters. Different water samples were investigated varying the content of organic dissolved and suspended matter. Quantification was performed using species-specific isotope dilution (SSID) and gas chromatography with inductively coupled plasma mass spectrometry (GC-ICP-MS). Different sample treatment strategies were evaluated and compared. The process of internal standard addition was investigated and optimized, hence the equilibrium between internal standards and matrix is of primary importance to perform accurate SSID. Samples spiked at EQS level were analyzed with a recovery between 95 and 105 %. Additionally real surface water samples were investigated and the TBT concentration for the whole water body was determined and compared with conventional routine analysis method.


Dumichen E.,BAM Federal Institute of Materials Research and Testing | Barthel A.-K.,BAM Federal Institute of Materials Research and Testing | Braun U.,BAM Federal Institute of Materials Research and Testing | Bannick C.G.,UBA Umweltbundesamt | And 4 more authors.
Water Research | Year: 2015

Small polymer particles with a diameter of less than 5 mm called microplastics find their way into the environment from polymer debris and industrial production. Therefore a method is needed to identify and quantify microplastics in various environmental samples to generate reliable concentration values. Such concentration values, i.e. quantitative results, are necessary for an assessment of microplastic in environmental media. This was achieved by thermal extraction in thermogravimetric analysis (TGA), connected to a solid-phase adsorber. These adsorbers were subsequently analysed by thermal desorption gas chromatography mass spectrometry (TDS-GC-MS). In comparison to other chromatographic methods, like pyrolyse gas chromatography mass spectrometry (Py-GC-MS), the relatively high sample masses in TGA (about 200 times higher than used in Py-GC-MS) analysed here enable the measurement of complex matrices that are not homogenous on a small scale. Through the characteristic decomposition products known for every kind of polymer it is possible to identify and even to quantify polymer particles in various matrices. Polyethylene (PE), one of the most important representatives for microplastics, was chosen as an example for identification and quantification. © 2015 Elsevier Ltd.


PubMed | BAM Federal Institute of Materials Research and Testing, UBA Umweltbundesamt, TU Berlin and University of Applied Sciences, Berlin
Type: | Journal: Water research | Year: 2015

Small polymer particles with a diameter of less than 5 mm called microplastics find their way into the environment from polymer debris and industrial production. Therefore a method is needed to identify and quantify microplastics in various environmental samples to generate reliable concentration values. Such concentration values, i.e. quantitative results, are necessary for an assessment of microplastic in environmental media. This was achieved by thermal extraction in thermogravimetric analysis (TGA), connected to a solid-phase adsorber. These adsorbers were subsequently analysed by thermal desorption gas chromatography mass spectrometry (TDS-GC-MS). In comparison to other chromatographic methods, like pyrolyse gas chromatography mass spectrometry (Py-GC-MS), the relatively high sample masses in TGA (about 200 times higher than used in Py-GC-MS) analysed here enable the measurement of complex matrices that are not homogenous on a small scale. Through the characteristic decomposition products known for every kind of polymer it is possible to identify and even to quantify polymer particles in various matrices. Polyethylene (PE), one of the most important representatives for microplastics, was chosen as an example for identification and quantification.

Loading UBA Umweltbundesamt collaborators
Loading UBA Umweltbundesamt collaborators