Time filter

Source Type

Kirchzarten, Germany

Corazza M.,European Commission - Joint Research Center Ispra | Bergamaschi P.,European Commission - Joint Research Center Ispra | Vermeulen A.T.,Energy Research Center of the Netherlands | Aalto T.,Finnish Meteorological Institute | And 12 more authors.
Atmospheric Chemistry and Physics | Year: 2011

We describe the setup and first results of an inverse modelling system for atmospheric N2O, based on a four-dimensional variational (4DVAR) technique and the atmospheric transport zoom model TM5. We focus in this study on the European domain, utilizing a comprehensive set of quasi-continuous measurements over Europe, complemented by N2O measurements from the Earth System Research Laboratory of the National Oceanic and Atmospheric Administration (NOAA/ESRL) cooperative global air sampling network. Despite ongoing measurement comparisons among networks parallel measurements at a limited number of stations show that significant offsets exist among the different laboratories. Since the spatial gradients of N2O mixing ratios are of the same order of magnitude as these biases, the direct use of these biased datasets would lead to significant errors in the derived emissions. Therefore, in order to also use measurements with unknown offsets, a new bias correction scheme has been implemented within the TM5-4DVAR inverse modelling system, thus allowing the simultaneous assimilation of observations from different networks. The N2O bias corrections determined in the TM5-4DVAR system agree within ∼0.1 ppb (dry-air mole fraction) with the bias derived from the measurements at monitoring stations where parallel NOAA discrete air samples are available. The N2O emissions derived for the northwest European and east European countries for 2006 show good agreement with the bottom-up emission inventories reported to the United Nations Framework Convention on Climate Change (UNFCCC). Moreover, the inverse model can significantly narrow the uncertainty range reported in N2O emission inventories for these countries, while the lack of measurements does not allow to reduce the uncertainties of emission estimates in southern Europe. Several sensitivity experiments were performed to test the robustness of the results. It is shown that also inversions without detailed a priori spatio-temporal emission distributions are capable to reproduce major regional emission patterns within the footprint of the existing atmospheric network, demonstrating the strong constraints of the atmospheric observations on the derived emissions. © 2011 Author(s).

The German Adaptation Strategy launched a process to assess the consequences of climate change and identify key areas of adaptation measures. For its effective and efficient implementation it is important to set priorities based on generally recognized criteria. This paper proposes a cross-sectoral prioritization concept for asses sing and selecting federal adaptation measures. Based on a literature review, five key criteria could be distinguished (strategic importance, urgency, side-effects, no-regret, flexibility), which were supplemented with criteria to assess the technical and socioeconom ic feasibility (economical aspects, acceptance). The multicriteria approach enhances transparency and traceability of decision making in the adaptation process. Taking account of climate impacts (path 1) and prioritizing adaptation measures using the multi-criteria approach (path 2) constitute only a first step. Step 2 integrates the findings of path 1 and 2 to select appropriate measures for an Adaptation Action Plan.©2013 licensee oekom verlag.

Henne S.,Empa - Swiss Federal Laboratories for Materials Science and Technology | Brunner D.,Empa - Swiss Federal Laboratories for Materials Science and Technology | Oney B.,Empa - Swiss Federal Laboratories for Materials Science and Technology | Leuenberger M.,University of Bern | And 6 more authors.
Atmospheric Chemistry and Physics | Year: 2016

Atmospheric inverse modelling has the potential to provide observation-based estimates of greenhouse gas emissions at the country scale, thereby allowing for an independent validation of national emission inventories. Here, we present a regional-scale inverse modelling study to quantify the emissions of methane (CH4) from Switzerland, making use of the newly established CarboCount-CH measurement network and a high-resolution Lagrangian transport model. In our reference inversion, prior emissions were taken from the "bottom-up" Swiss Greenhouse Gas Inventory (SGHGI) as published by the Swiss Federal Office for the Environment in 2014 for the year 2012. Overall we estimate national CH4 emissions to be 196±18 Ggyr-1 for the year 2013 (1σ uncertainty). This result is in close agreement with the recently revised SGHGI estimate of 206-33 Ggyr-1 as reported in 2015 for the year 2012. Results from sensitivity inversions using alternative prior emissions, uncertainty covariance settings, large-scale background mole fractions, two different inverse algorithms (Bayesian and extended Kalman filter), and two different transport models confirm the robustness and independent character of our estimate. According to the latest SGHGI estimate the main CH4 source categories in Switzerland are agriculture (78 %), waste handling (15 %) and natural gas distribution and combustion (6 %). The spatial distribution and seasonal variability of our posterior emissions suggest an overestimation of agricultural CH4 emissions by 10 to 20% in the most recent SGHGI, which is likely due to an overestimation of emissions from manure handling. Urban areas do not appear as emission hotspots in our posterior results, suggesting that leakages from natural gas distribution are only a minor source of CH4 in Switzerland. This is consistent with rather low emissions of 8.4 Ggyr-1 reported by the SGHGI but inconsistent with the much higher value of 32 Ggyr-1 implied by the EDGARv4.2 inventory for this sector. Increased CH4 emissions (up to 30% compared to the prior) were deduced for the northeastern parts of Switzerland. This feature was common to most sensitivity inversions, which is a strong indicator that it is a real feature and not an artefact of the transport model and the inversion system. However, it was not possible to assign an unambiguous source process to the region. The observations of the CarboCount-CH network provided invaluable and independent information for the validation of the national bottom-up inventory. Similar systems need to be sustained to provide independent monitoring of future climate agreements. © Author(s) 2016.

Schindler B.K.,Ruhr University Bochum | Schindler B.K.,PROOF ACS GmbH | Esteban M.,Institute of Health Carlos III ISCIII | Koch H.M.,Ruhr University Bochum | And 48 more authors.
International Journal of Hygiene and Environmental Health | Year: 2014

COPHES/DEMOCOPHES has its origins in the European Environment and Health Action Plan of 2004 to "develop a coherent approach on human biomonitoring (HBM) in Europe". Within this twin-project it was targeted to collect specimens from 120 mother-child-pairs in each of the 17 participating European countries. These specimens were investigated for six biomarkers (mercury in hair; creatinine, cotinine, cadmium, phthalate metabolites and bisphenol A in urine). The results for mercury in hair are described in a separate paper. Each participating member state was requested to contract laboratories, for capacity building reasons ideally within its borders, carrying out the chemical analyses. To ensure comparability of analytical data a Quality Assurance Unit (QAU) was established which provided the participating laboratories with standard operating procedures (SOP) and with control material. This material was specially prepared from native, non-spiked, pooled urine samples and was tested for homogeneity and stability. Four external quality assessment exercises were carried out. Highly esteemed laboratories from all over the world served as reference laboratories. Web conferences after each external quality assessment exercise functioned as a new and effective tool to improve analytical performance, to build capacity and to educate less experienced laboratories. Of the 38 laboratories participating in the quality assurance exercises 14 laboratories qualified for cadmium, 14 for creatinine, 9 for cotinine, 7 for phthalate metabolites and 5 for bisphenol A in urine. In the last of the four external quality assessment exercises the laboratories that qualified for DEMOCOPHES performed the determinations in urine with relative standard deviations (low/high concentration) of 18.0/2.1% for cotinine, 14.8/5.1% for cadmium, 4.7/3.4% for creatinine. Relative standard deviations for the newly emerging biomarkers were higher, with values between 13.5 and 20.5% for bisphenol A and between 18.9 and 45.3% for the phthalate metabolites. Plausibility control of the HBM results of all participating countries disclosed analytical shortcomings in the determination of Cd when using certain ICP/MS methods. Results were corrected by reanalyzes. The COPHES/DEMOCOPHES project for the first time succeeded in performing a harmonized pan-European HBM project. All data raised have to be regarded as utmost reliable according to the highest international state of the art, since highly renowned laboratories functioned as reference laboratories. The procedure described here, that has shown its success, can be used as a blueprint for future transnational, multicentre HBM projects. © 2013 Elsevier GmbH.

Treu G.,Umweltbundesamt UBA | Drost W.,Umweltbundesamt UBA | Johncke U.,Umweltbundesamt UBA | Rauert C.,Umweltbundesamt UBA | Schlechtriem C.,Fraunhofer Institute for Molecular Biology and Applied Ecology
Environmental Sciences Europe | Year: 2015

Bioaccumulation plays a vital role in understanding the fate of a substance in the environment and is key to the regulation of chemicals in several jurisdictions. The current assessment approaches commonly use the octanol–water partition coefficient (log KOW) as an indicator for bioaccumulation and the bioconcentration factor (BCF) as a standard criterion to identify bioaccumulative substances show limitations. The log KOW does not take into account active transport phenomena or special structural properties (e.g., amphiphilic substances or dissociating substances) and therefore additional screening criteria are required. Regulatory BCF studies are so far restricted to fish and uptake through the gills. Studies on (terrestrial) air-breathing organisms are missing. Though there are alternative tests such as the dietary exposure bioaccumulation fish test described in the recently revised OECD test guideline 305, it still remains unclear how to deal with results of alternative tests in regulatory decision-making processes. A substantial number of bioaccumulation fish tests are required in regulation. The development of improved test systems following the 3R principles, namely to replace, reduce and refine animal testing, is thus required. All these aspects stress the importance to further develop the assessment of bioaccumulation. The Dessau Workshop on Bioaccumulation which was held from June 26th to 27th 2014, in Dessau, Germany, provided a comprehensive overview of the state of the art of bioaccumulation assessment, provided insights into the problems and challenges addressed by the regulatory authorities and described new research concepts and their regulatory implications. The event was organised by UBA (Dessau, Germany) and Fraunhofer IME (Schmallenberg, Germany). About 50 participants from industry, regulatory bodies and academia listened to 14 lectures on selected topics and joined the plenary discussions. © 2015, Treu et al.

Discover hidden collaborations