Time filter

Source Type

Fortel L.,French National Institute for Agricultural Research | Henry M.,French National Institute for Agricultural Research | Guilbaud L.,French National Institute for Agricultural Research | Guirao A.L.,French National Institute for Agricultural Research | And 4 more authors.

Background: Wild bees are important pollinators that have declined in diversity and abundance during the last decades. Habitat destruction and fragmentation associated with urbanization are reported as part of the main causes of this decline. Urbanization involves dramatic changes of the landscape, increasing the proportion of impervious surface while decreasing that of green areas. Few studies have investigated the effects of urbanization on bee communities. We assessed changes in the abundance, species richness, and composition of wild bee community along an urbanization gradient. Methodology/Principal Findings: Over two years and on a monthly basis, bees were sampled with colored pan traps and insect nets at 24 sites located along an urbanization gradient. Landscape structure within three different radii was measured at each study site. We captured 291 wild bee species. The abundance of wild bees was negatively correlated with the proportion of impervious surface, while species richness reached a maximum at an intermediate (50%) proportion of impervious surface. The structure of the community changed along the urbanization gradient with more parasitic species in sites with an intermediate proportion of impervious surface. There were also greater numbers of cavity-nesting species and long-tongued species in sites with intermediate or higher proportion of impervious surface. However, urbanization had no effect on the occurrence of species depending on their social behavior or body size. Conclusions/Significance: We found nearly a third of the wild bee fauna known from France in our study sites. Indeed, urban areas supported a diverse bee community, but sites with an intermediate level of urbanization were the most speciose ones, including greater proportion of parasitic species. The presence of a diverse array of bee species even in the most urbanized area makes these pollinators worthy of being a flagship group to raise the awareness of urban citizens about biodiversity. © 2014 Fortel et al. Source

Henry M.,French National Institute for Agricultural Research | Bertrand C.,French National Institute for Agricultural Research | Bertrand C.,CNRS Ecosystems, Biodiversity, and Evolution Laboratory | Le Feon V.,French National Institute for Agricultural Research | And 7 more authors.
Nature Communications

The risk assessment of plant protection products on pollinators is currently based on the evaluation of lethal doses through repeatable lethal toxicity laboratory trials. Recent advances in honeybee toxicology have, however, raised interest on assessing sublethal effects in free-ranging individuals. Here, we show that the sublethal effects of a neonicotinoid pesticide are modified in magnitude by environmental interactions specific to the landscape and time of exposure events. Field sublethal assessment is therefore context dependent and should be addressed in a temporally and spatially explicit way, especially regarding weather and landscape physiognomy. We further develop an analytical Effective Dose (ED) framework to help disentangle context-induced from treatment-induced effects and thus to alleviate uncertainty in field studies. Although the ED framework involves trials at concentrations above the expected field exposure levels, it allows to explicitly delineating the climatic and landscape contexts that should be targeted for in-depth higher tier risk assessment. © 2014 Macmillan Publishers Limited. All rights reserved. Source

Henry M.,French National Institute for Agricultural Research | Cerrutti N.,UMT Protection des Abeilles Dans lEnvironnement | Aupinel P.,French National Institute for Agricultural Research | Decourtye A.,UMT Protection des Abeilles Dans lEnvironnement | And 5 more authors.
Proceedings of the Royal Society B: Biological Sciences

European governments have banned the use of three common neonicotinoid pesticides due to insufficiently identified risks to bees. This policy decision is controversial given the absence of clear consistency between toxicity assessments of those substances in the laboratory and in the field. Although laboratory trials report deleterious effects in honeybees at trace levels, field surveys reveal no decrease in the performance of honeybee colonies in the vicinity of treated fields. Here we provide the missing link, showing that individual honeybees near thiamethoxam-treated fields do indeed disappear at a faster rate, but the impact of this is buffered by the colonies’ demographic regulation response. Although we could ascertain the exposure pathway of thiamethoxam residues from treated flowers to honeybee dietary nectar, we uncovered an unexpected pervasive co-occurrence of similar concentrations of imidacloprid, another neonicotinoid normally restricted to non-entomophilous crops in the study country. Thus, its origin and transfer pathways through the succession of annual crops need be elucidated to conveniently appraise the risks of combined neonicotinoid exposures. This study reconciles the conflicting laboratory and field toxicity assessments of neonicotinoids on honeybees and further highlights the difficulty in actually detecting non-intentional effects on the field through conventional risk assessment methods. © 2015 The Author(s) Published by the Royal Society. All rights reserved. Source

Rollin O.,ACTA | Bretagnolle V.,CNRS Chize Center for Biological Studies | Decourtye A.,ACTA | Aptel J.,French National Institute for Agricultural Research | And 5 more authors.
Agriculture, Ecosystems and Environment

Bees provide an essential pollination service for crops and wild plants. However, substantial declines in bee populations and diversity have been observed in Europe and North America for the past 50 years, partly due to the loss of natural habitats and reduction of plant diversity resulting from agricultural intensification. To mitigate the negative effects of agricultural intensification, agri-environmental schemes (AES) have been proposed to sustain bees and others pollinators in agrosystems. AES include the preservation of semi-natural habitats such as grasslands, fallows, woodlots, hedgerows or set-aside field margins. However, empirical evidence suggest that the use of those semi-natural habitats by bees may vary greatly among bee functional groups and may further be influenced by the presence of alternative foraging habitats such as mass-flowering crops. The present study sets out to investigate whether the three bee groups typically targeted by AES (honey bees, bumble bees and other wild bees) differ in the way they use those semi-natural habitats relative to common mass-flowering crops (oilseed rape, sunflower, alfalfa) in an intensive agricultural farming system. A clear segregation pattern in the use of floral resources appeared between honey bees and wild bees, with the former being tightly associated with mass-flowering crops and the latter with semi-natural habitats. Bumble bees had an intermediate strategy and behaved as habitat generalists. Therefore, it would be sensible to treat the three bee groups with distinct AES management strategies, and to further consider potential effects on AES efficiency of alternative foraging habitats in the surrounding. This study also stresses the importance of native floral resources, particularly in semi-natural herbaceous habitats, for sustaining wild bee populations. © 2013 Elsevier B.V. Source

Discover hidden collaborations