Entity

Time filter

Source Type

Illkirch-Graffenstaden, France

Zirafi O.,University of Ulm | Kim K.-A.,University of Ulm | Standker L.,University of Ulm | Standker L.,Pharis Biotec GmbH | And 36 more authors.
Cell Reports | Year: 2015

CXCL12-CXCR4 signaling controls multiple physiological processes and its dysregulation is associated with cancers and inflammatory diseases. To discover as-yet-unknown endogenous ligands of CXCR4, we screened a blood-derived peptide library for inhibitors of CXCR4-tropic HIV-1 strains. This approach identified a 16 amino acid fragment of serum albumin as an effective and highly specific CXCR4 antagonist. The endogenous peptide, termed EPI-X4, is evolutionarily conserved and generated from the highly abundant albumin precursor by pH-regulated proteases. EPI-X4 forms an unusual lasso-like structure and antagonizes CXCL12-induced tumor cell migration, mobilizes stem cells, and suppresses inflammatory responses in mice. Furthermore, the peptide is abundant in the urine of patients with inflammatory kidney diseases and may serve as a biomarker. Our results identify EPI-X4 as a key regulator of CXCR4 signaling and introduce proteolysis of an abundant precursor protein as an alternative concept for chemokine receptor regulation. © 2015 The Authors. Source


Kutuzov M.M.,Institute of Chemical Biology and Fundamental Medicine | Khodyreva S.N.,Novosibirsk State University | Ilina E.S.,Novosibirsk State University | Sukhanova M.V.,Institute of Chemical Biology and Fundamental Medicine | And 2 more authors.
Biochimie | Year: 2015

In eukaryotes the stability of genome is provided by functioning of DNA repair systems. One of the main DNA repair pathways in eukaryotes is the base excision repair (BER). This system requires precise regulation for correct functioning. Two members of the PARP family - PARP-1 and PARP-2, which can be activated by DNA damage - are widely considered as regulators of DNA repair processes, including BER. In contrast to PARP-1, the role of PARP-2 in BER has not been extensively studied yet. Since AP site is one of the most frequent type of DNA damage and a key intermediate of BER at the stage preceding formation of DNA breaks, in this paper we focused on the characterization of PARP-2 interaction with AP site-containing DNAs. We demonstrated that PARP-2, like PARP-1, can interact with the intact AP site via Schiff base formation, in spite of crucial difference in the structure of the DNA binding domains of these PARPs. By cross-linking of PARPs to AP DNA, we determined that the N-terminal domains of both PARPs are involved in formation of cross-links with AP DNA. We have also confirmed that DNA binding by PARP-2, in contrast to PARP-1, is not modulated by autoPARylation. PARP-2, like PARP-1, can inhibit the activity of APE1 by binding to AP site, but, in contrast to PARP-1, this inhibitory influence is hardly regulated by PAR synthesis. At the same time, 5′-dRP lyase activity of both PARPs is comparable, although being much weaker than that of Pol β, which is considered as the main 5′-dRP lyase of the BER process. © 2015 Elsevier B.V. and Société française de biochimie et biologie Moléculaire (SFBBM). All rights reserved. Source


Kutuzov M.M.,Institute of Chemical Biology and Fundamental Medicine | Khodyreva S.N.,Novosibirsk State University | Ame J.-C.,UMR7242 | Ilina E.S.,Novosibirsk State University | And 3 more authors.
Biochimie | Year: 2013

Poly(ADP-ribosyl)ation is a posttranslational protein modification significant for genomic stability and cell survival in response to DNA damage. Poly(ADP-ribosyl)ation is catalyzed by poly(ADP-ribose)polymerases (PARPs). Among the 17 members of the PARP family, PARP-1 and PARP-2 are described as enzymes whose catalytic activity is stimulated by some types of DNA damages. Whereas the role of PARP-1 in response to DNA damage has been widely illustrated, the contribution of another DNA-dependent PARP, PARP-2, is less documented. To find out specific DNA targets of PARP-2 we evaluated by EMSA Kd values of PARP-2-DNA complexes for several DNA structures mimicking intermediates of different DNA metabolizing processes. In addition, we tested these DNA as activators of PARP-1 and PARP-2 in poly(ADP-ribose) synthesis. Like PARP-1, PARP-2 doesn't show correlation between activation efficiency and Kd values for DNA. PARP-2 displayed the highest affinity for flap-containing DNA, but was more efficiently activated by 5′-overhang DNA. Evaluating the influence of PARP-1 and PARP-2 on DNA repair synthesis catalyzed by DNA polymerase β revealed that both PARPs inhibit DNA polymerase β activity. However, unlike PARP-1, poly(ADP-ribosyl)ation of PARP-2 does not result in restoration of DNA synthesis efficiency. Similarly, both PARPs proteins inhibited FEN1 activity, but only activation of PARP-1, not PARP-2, could restore FEN1 activity, and only when PARP-2 was not present. Taken together, our data show that PARP-2 can directly regulate BER proteins but also can modulate the influence of PARP-1 on these BER proteins, by decreasing its poly(ADP-ribosyl)ation activity. © 2013 Elsevier Masson SAS. All rights reserved. Source

Discover hidden collaborations