Time filter

Source Type

Dinard, France

Tigriopus brevicornis is a marine rock pool copepod widely distributed along Atlantic coasts. Due to the absence of a known dispersal mechanism by free swimming stages, exchanges between populations over long distances are questionable. In order to analyse the evolution of an isolated supralittoral rock pool population, sampling of the copepod was performed monthly during 1 year and compared to samplings over 5 years in the same rock pool, as well as from other rock pools. Using ITS1 analysis, cyclical changes in genetic composition were detected. Our results give clear indications concerning the segregation of the rock pool population and a lack of gene flow among outside populations. A network analysis shows the presence of several shared dominant haplotypes and also singletons differing by one mutation point. Fst analyses indicate that the main changes occur in autumn and winter. The few analogies of ITS1 sequences with nearby populations may indicate that new migrants must re-colonise the pools from surrounding rock crevices in the intertidal habitat where they may have found a refuge after bad weather conditions. © 2015, Springer Science+Business Media New York.

Gerard C.,CNRS Ecosystems, Biodiversity, and Evolution Laboratory | Herve M.,French National Institute for Agricultural Research | Herve M.,Institute of Plant science Biotic Interactions | Reveillac E.,UMR 7208 BOREA | And 2 more authors.
Hydrobiologia | Year: 2015

Are the distribution of Mazocraes alosae and its impact on the host similar between Alosa alosa and A. fallax according to their resemblances? Parasites were numbered on each gill of shads sampled in North-East Atlantic coastal waters and connected rivers. Their impact on host condition was measured using girth, gonado-somatic ratio, C/N ratio, and Fulton’s K. Prevalence and mean intensity of M. alosae were significantly higher for A. alosa than for A. fallax, including in sympatric conditions. The mean intensity varied among sites whatever fish species; it was higher in coastal–estuarine versus fresh waters only for A. fallax. The distribution of M. alosae was aggregated in the host population whatever species. At the host individual level, some gills (second and third for A. alosa, second for A. fallax) were significantly more inhabited than others, probably in relation with larger water volumes flowing on these gills and mazocraeid sedentary lifestyle. Despite high prevalence and intensity, no negative impact of M. alosae was demonstrated on the host condition whatever the index considered. Our study underlines the major occurrence of M. alosae on shads and the potential use of such benign parasite as biological tag to discriminate closely related host species. © 2015 Springer International Publishing Switzerland

Marie B.,University of Burgundy | Marie A.,French National Center for Scientific Research | Jackson D.J.,University of Gottingen | Dubost L.,French National Center for Scientific Research | And 3 more authors.
Proteome Science | Year: 2010

Background: The formation of the molluscan shell is regulated to a large extent by a matrix of extracellular macromolecules that are secreted by the shell forming tissue, the mantle. This so called "calcifying matrix" is a complex mixture of proteins and glycoproteins that is assembled and occluded within the mineral phase during the calcification process. While the importance of the calcifying matrix to shell formation has long been appreciated, most of its protein components remain uncharacterised.Results: Recent expressed sequence tag (EST) investigations of the mantle tissue from the tropical abalone (Haliotis asinina) provide an opportunity to further characterise the proteins in the shell by a proteomic approach. In this study, we have identified a total of 14 proteins from distinct calcified layers of the shell. Only two of these proteins have been previously characterised from abalone shells. Among the novel proteins are several glutamine- and methionine-rich motifs and hydrophobic glycine-, alanine- and acidic aspartate-rich domains. In addition, two of the new proteins contained Kunitz-like and WAP (whey acidic protein) protease inhibitor domains.Conclusion: This is one of the first comprehensive proteomic study of a molluscan shell, and should provide a platform for further characterization of matrix protein functions and interactions. © 2010 Marie et al; licensee BioMed Central Ltd.

Discover hidden collaborations