Veurey-Voroize, France
Veurey-Voroize, France

Time filter

Source Type

The infrared detector includes a sensitive retina capable of detecting a radiation in the wavelength range between 8 and 14 micrometers; and a package containing the sensitive retina and including a window located opposite to the retina, said window comprising a substrate at least partially transparent in the wavelength range between 2 and 14 micrometers; and a set of optical filters formed on the window to attenuate an incident radiation on the retina in a wavelength range between 2 and 8 micrometers, and respectively an optical filter formed on a first surface of the window and attenuating the incident radiation in a first interval of the wavelength range between 2 and 8 micrometers, and a periodic diffraction grating formed on a second surface of the window and attenuating the incident radiation in a second interval of the wavelength range between 2 and 8 micrometers, different from the first interval.


An infrared radiation detection device comprising: a substrate; a matrix of at least one line of elements for detecting said radiation, each comprising a resistive imaging bolometer, said matrix being formed above the substrate; means for reading the bolometers of the matrix, means for measuring the temperature in at least one point of the substrate; and means for correcting the signal formed from each bolometer as a function of the temperature measured in at least one point of the substrate. The correcting means are capable of correcting the signal formed from the imaging bolometer by means of a predetermined physical model of the temperature behaviour of said signal.


A method corrects a gain table by a correction of the response dispersion of resistive bolometers of a bolometric detector of a bolometer retina. The method includes: where:


Method of diagnosing the state of signal-forming chains of a detector including an array of detection bolometers, each chain comprising a bolometer, a circuit of stimulation, and a circuit forming a signal according to said stimulation, including forming an image of a substantially uniform scene on the array; applying at least first and second stimulations to the chains; reading the formed signals; and for each chain in a predetermined set, defining a neighborhood of chains; calculating coefficients of a polynomial interpolating the values of signals formed by said chain; calculating, for each chain of the neighborhood, coefficients of a polynomial interpolating the values of signals formed by said neighborhood chain; calculating an average and standard deviation of said coefficients of the neighborhood chains or of the set of neighborhood chains and said chain; and diagnosing if said chain is defective using the coefficients and the calculated average and standard deviation.


A method for detecting infrared radiation by using an array of bolometers. The following steps are used to read a bolometer of the array of bolometers: biasing the bolometer at a predetermined voltage in order to make current flow through the bolometer; subtracting a common-mode current from the current that flows through the bolometers; and producing a voltage by integrating the difference between the current that flows through the bolometers and the common-mode current.


An infrared detector including an array of detection bolometers each having a bolometric membrane suspended above a substrate, and associated with each bolometer: a detection branch, including the bolometer and a circuit performing a biasing according to a voltage set point, a compensation branch, including a compensation bolometer thermalized to the substrate, a circuit performing a biasing according to a voltage set point, an integrator for generating a voltage by integrating a difference between the currents flowing through said branches, a circuit generating a quantity depending on substrate temperature, including: a bolometer thermalized to the substrate, and a circuit for biasing the bolometer, and a circuit for generating the voltage set points according to said quantity. When the array is exposed to a uniform reference scene, the average of the differences between currents flowing through said branches is within the integrator dynamic range for a substrate temperature range from 30 C.-90 C.


The invention concerns a method of image processing involving: receiving, by a processing device, an input image (IB) captured by a pixel array sensitive to infrared radiation; determining, based on the input image and on a column component vector (VCOL), a first scale factor () by estimating a level of the column spread present in the input image; generating column offset values (.VCOL(y)) based on the product of the first scale factor with the values of the vector; determining, based on the input image and on a 2D dispersion matrix (IDISP), a second scale factor () by estimating a level of the 2D dispersion present in the input image; generating pixel offset values (.IDISP(x,y)) based on the product of the second scale factor with the values of the matrix; and generating a corrected image (IC) by applying the column and pixel offset values.


Patent
Ulis and French Atomic Energy Commission | Date: 2013-12-13

Infrared detection device comprising a gas detection device comprising:


Patent
Ulis and Onera | Date: 2012-04-16

The imaging system for imaging field rays comprises a detection surface, a device for focusing the field rays with said detection surface, and a diaphragm. Said device comprises a Fresnel lens comprising a first dioptre, the non-plane surface of which, called the active zone, makes it possible to focus the field rays towards said detection surface, and said diaphragm allows controlled distribution of the field rays over said active zone.

Loading ULIS collaborators
Loading ULIS collaborators