Entity

Time filter

Source Type


Briscoe J.,UK National Institute for Medical Research
Nature reviews. Molecular cell biology | Year: 2013

The cloning of the founding member of the Hedgehog (HH) family of secreted proteins two decades ago inaugurated a field that has diversified to encompass embryonic development, stem cell biology and tissue homeostasis. Interest in HH signalling increased when the pathway was implicated in several cancers and congenital syndromes. The mechanism of HH signalling is complex and remains incompletely understood. Nevertheless, studies have revealed novel biological insights into this system, including the function of HH lipidation in the secretion and transport of this ligand and details of the signal transduction pathway, which involves Patched 1, Smoothened and GLI proteins (Cubitus interruptus in Drosophila melanogaster), as well as, in vertebrates, primary cilia.


Berry M.P.,UK National Institute for Medical Research
Current opinion in immunology | Year: 2013

Tuberculosis (TB) remains a disease of considerable mortality and morbidity. Studies employing microarrays to derive transcriptional profiles of the host response during TB, which combined with data from experimental systems have highlighted a potentially detrimental role for type I interferons during infection, with important implications for vaccine and therapeutic development. In addition, these studies have provided candidate biomarkers which may advance diagnosis and treatment monitoring. These studies thus exemplify the promise of a systems biology approach to study complex infectious disease such as TB. Copyright © 2013 Elsevier Ltd. All rights reserved.


Gilchrist M.J.,UK National Institute for Medical Research
Genesis | Year: 2012

The Xenopus community has made concerted efforts over the last 10-12 years systematically to improve the available sequence information for this amphibian model organism ideally suited to the study of early development in vertebrates. Here I review progress in the collection of both sequence data and physical clone reagents for protein coding genes. I conclude that we have cDNA sequences for around 50% and full-length clones for about 35% of the genes in Xenopus tropicalis, and similar numbers but a smaller proportion for Xenopus laevis. In addition, I demonstrate that the gaps in the current genome assembly create problems for the computational elucidation of gene sequences, and suggest some ways to ameliorate the effects of this. © 2012 Wiley Periodicals, Inc.


Spence P.J.,UK National Institute for Medical Research
Nature protocols | Year: 2011

The rodent malaria parasite Plasmodium chabaudi chabaudi shares many features with human malaria species, including P. falciparum, and is the in vivo model of choice for many aspects of malaria research in the mammalian host, from sequestration of parasitized erythrocytes, to antigenic variation and host immunity and immunopathology. This protocol describes an optimized method for the transformation of mature blood-stage P.c. chabaudi and a description of a vector that targets efficient, single crossover integration into the P.c. chabaudi genome. Transformed lines are reproducibly generated and selected within 14-20 d, and show stable long-term protein expression even in the absence of drug selection. This protocol, therefore, provides the scientific community with a robust and reproducible method to generate transformed P.c. chabaudi parasites expressing fluorescent, bioluminescent and model antigens that can be used in vivo to dissect many of the fundamental principles of malaria infection.


Horga A.,UK National Institute for Medical Research
Neurology | Year: 2013

To obtain minimum point prevalence rates for the skeletal muscle channelopathies and to evaluate the frequency distribution of mutations associated with these disorders. Analysis of demographic, clinical, electrophysiologic, and genetic data of all patients assessed at our national specialist channelopathy service. Only patients living in the United Kingdom with a genetically defined diagnosis of nondystrophic myotonia or periodic paralysis were eligible for the study. Prevalence rates were estimated for England, December 2011. A total of 665 patients fulfilled the inclusion criteria, of which 593 were living in England, giving a minimum point prevalence of 1.12/100,000 (95% confidence interval [CI] 1.03-1.21). Disease-specific prevalence figures were as follows: myotonia congenita 0.52/100,000 (95% CI 0.46-0.59), paramyotonia congenita 0.17/100,000 (95% CI 0.13-0.20), sodium channel myotonias 0.06/100,000 (95% CI 0.04-0.08), hyperkalemic periodic paralysis 0.17/100,000 (95% CI 0.13-0.20), hypokalemic periodic paralysis 0.13/100,000 (95% CI 0.10-0.17), and Andersen-Tawil syndrome (ATS) 0.08/100,000 (95% CI 0.05-0.10). In the whole sample (665 patients), 15 out of 104 different CLCN1 mutations accounted for 60% of all patients with myotonia congenita, 11 out of 22 SCN4A mutations for 86% of paramyotonia congenita/sodium channel myotonia pedigrees, and 3 out of 17 KCNJ2 mutations for 42% of ATS pedigrees. We describe for the first time the overall prevalence of genetically defined skeletal muscle channelopathies in England. Despite the large variety of mutations observed in patients with nondystrophic myotonia and ATS, a limited number accounted for a large proportion of cases.

Discover hidden collaborations