Entity

Time filter

Source Type

Colney, United Kingdom

Juge N.,UK Institute of Food Research
Trends in Microbiology | Year: 2012

The gastrointestinal tract (GIT) is lined by a layer of mucus formed by mucin glycoproteins. This layer constitutes a physical and chemical barrier between the intestinal contents and the underlying epithelia. In addition to this protective role, mucins harbor glycan-rich domains that provide preferential binding sites for pathogens and commensal bacteria. Although mucus-microbial interactions in the GIT play a crucial role in determining the outcome of relationships of both commensal and pathogens with the host, the adhesins and ligands involved in the interaction are poorly delineated. This review focuses on the current knowledge of microbial adhesins to gastrointestinal mucus and mucus components. © 2011 Elsevier Ltd.


Maldonado-Valderrama J.,UK Institute of Food Research | Patino J.M.R.,University of Seville
Current Opinion in Colloid and Interface Science | Year: 2010

The distribution of proteins and surfactants at fluid interfaces (air-water and oil-water) is determined by the competitive adsorption between the two types of emulsifiers and by the nature of the protein-surfactant interactions, both at the interface and in the bulk phase, with a pronounced impact on the interfacial rheological properties of these systems. Therefore, the interfacial rheology is of practical importance for food dispersion (emulsion or foam) formulation, texture, and stability. In this review, the existence of protein-surfactant interactions, the mechanical behaviour and/or the composition of emulsifiers at the interface are indirectly determined by interfacial rheology of the mixed films. The effect on the interfacial rheology of protein-surfactant mixed films of the protein, the surfactant, the interface and bulk compositions, the method of formation of the interfacial film, the interactions between film forming components, and the displacement of protein by surfactant have been analysed. The last section tries to understand the role of interfacial rheology of protein-surfactant mixed films on food dispersion formation and stability. The emphasis of the present review is on the interfacial dilatational rheology. © 2009 Elsevier Ltd.


Morris V.J.,UK Institute of Food Research
Trends in Biotechnology | Year: 2011

Nanoscience is the study of phenomena and the manipulation of materials at the atomic or molecular level. Nanotechnology involves the design, production and use of structures through control of the size and shape of the materials at the nanometre scale. Nanotechnology in the food sector is an emerging area with considerable research and potential products. There is particular interest in the definition and regulation of engineered nanomaterials. This term covers three classes of nanomaterials: natural and processed nanostructures in foods; particulate nanomaterials metabolized or excreted on digestion; and particulate nanomaterials not broken down on digestion, which accumulate in the body. This review describes examples of these classes and their likely status in the food industry. © 2011 Elsevier Ltd.


Pegg A.E.,Pennsylvania State University | Michael A.J.,UK Institute of Food Research
Cellular and Molecular Life Sciences | Year: 2010

Spermine is present in many organisms including animals, plants, some fungi, some archaea, and some bacteria. It is synthesized by spermine synthase, a highly specific aminopropyltransferase. This review describes spermine synthase structure, genetics, and function. Structural and biochemical studies reveal that human spermine synthase is an obligate dimer. Each monomer contains a C-terminal domain where the active site is located, a central linking domain that also forms the lid of the catalytic domain, and an N-terminal domain that is structurally very similar to S-adenosylmethionine decarboxylase. Gyro mice, which have an X-chromosomal deletion including the spermine synthase (SMS) gene, lack all spermine and have a greatly reduced size, sterility, deafness, neurological abnormalities, and a tendency to sudden death. Mutations in the human SMS lead to a rise in spermidine and reduction of spermine causing Snyder-Robinson syndrome, an X-linked recessive condition characterized by mental retardation, skeletal defects, hypotonia, and movement disorders. © 2009 Birkhäuser Verlag, Basel/Switzerland.


Lund B.M.,UK Institute of Food Research
Foodborne Pathogens and Disease | Year: 2014

Low-microbial diets are advised by many institutions for people with neutropenia resulting from treatment with immunosuppressive drugs or medical conditions that increase their susceptibility to foodborne disease. In this article, the main microbiological hazards associated with foods are outlined, and a low-microbial diet in which higher-risk foods are replaced by lower-risk foods is described. © Copyright 2014, Mary Ann Liebert, Inc. 2014.

Discover hidden collaborations