Entity

Time filter

Source Type


Grant
Agency: GTR | Branch: EPSRC | Program: | Phase: Research Grant | Award Amount: 2.51M | Year: 2015

Glass has been a key material for many important advances in civilization; it was glass lenses which allowed microscopes to see bacteria for the first time and telescopes which revealed the planets and the moons of Jupiter. Glassware itself has contributed to the development of chemical, biological and cultural progress for thousands of years. The transformation of society with glass continues in modern times; as strands of glass optical fibres transform the internet and how we communicate. Today, glasses have moved beyond transparent materials, and through ongoing research have become active advanced and functional materials. Unlike conventional glasses made from silica or sand, research is now producing glasses from materials such as sulphur, which yields an unusual, yellow orange glass with incredibly varied properties. This next generation of speciality glasses are noted for their functionality and their ability to respond to optical, electrical and thermal stimuli. These glasses have the ability to switch, bend, self-organize and darken when exposed to light, they can even conduct electricity. They transmit light in the infra-red, which ordinary glass blocks and the properties of these glasses can even change, when strong light is incident upon them. The demand for speciality glass is growing and these advanced materials are of national importance for the UK. Our businesses that produce and process materials have a turnover of around £170 billion per annum; represent 15% of the countrys GDP and have exports valued at £50 billion. With our proposed research programme we will produce extremely pure, highly functional glasses, unique to the world. The aims of our proposed research are as follows: - To establish the UK as a world-leading speciality glass research and manufacturing facility - To discovery new and optimize existing glass compositions, particularly in glasses made with sulphur - To develop links with UK industry and help them to expit these new glass materials - To demonstrate important new electronic, telecommunication, switching devices from these glasses - To partner other UK Universities to explore new and emerging applications of speciality glass To achieve these goals we bring together a world-class, UK team of physicists, chemists, engineers and computer scientists from Southampton, Exeter, Oxford, Cambridge and Heriot-Watt Universities. We are partners with over 15 UK companies who will use these materials in their products or contribute to new ways of manufacturing them. This proposal therefore provides a unique opportunity to underpin a substantial national programme in speciality-glass manufacture, research and development.


Grant
Agency: GTR | Branch: EPSRC | Program: | Phase: Research Grant | Award Amount: 4.56M | Year: 2016

Today we use many objects not normally associated with computers or the internet. These include gas meters and lights in our homes, healthcare devices, water distribution systems and cars. Increasingly, such objects are digitally connected and some are transitioning from cellular network connections (M2M) to using the internet: e.g. smart meters and cars - ultimately self-driving cars may revolutionise transport. This trend is driven by numerous forces. The connection of objects and use of their data can cut costs (e.g. allowing remote control of processes) creates new business opportunities (e.g. tailored consumer offerings), and can lead to new services (e.g. keeping older people safe in their homes). This vision of interconnected physical objects is commonly referred to as the Internet of Things. The examples above not only illustrate the vast potential of such technology for economic and societal benefit, they also hint that such a vision comes with serious challenges and threats. For example, information from a smart meter can be used to infer when people are at home, and an autonomous car must make quick decisions of moral dimensions when faced with a child running across on a busy road. This means the Internet of Things needs to evolve in a trustworthy manner that individuals can understand and be comfortable with. It also suggests that the Internet of Things needs to be resilient against active attacks from organised crime, terror organisations or state-sponsored aggressors. Therefore, this project creates a Hub for research, development, and translation for the Internet of Things, focussing on privacy, ethics, trust, reliability, acceptability, and security/safety: PETRAS, (also suggesting rock-solid foundations) for the Internet of Things. The Hub will be designed and run as a social and technological platform. It will bring together UK academic institutions that are recognised international research leaders in this area, with users and partners from various industrial sectors, government agencies, and NGOs such as charities, to get a thorough understanding of these issues in terms of the potentially conflicting interests of private individuals, companies, and political institutions; and to become a world-leading centre for research, development, and innovation in this problem space. Central to the Hub approach is the flexibility during the research programme to create projects that explore issues through impactful co-design with technical and social science experts and stakeholders, and to engage more widely with centres of excellence in the UK and overseas. Research themes will cut across all projects: Privacy and Trust; Safety and Security; Adoption and Acceptability; Standards, Governance, and Policy; and Harnessing Economic Value. Properly understanding the interaction of these themes is vital, and a great social, moral, and economic responsibility of the Hub in influencing tomorrows Internet of Things. For example, a secure system that does not adequately respect privacy, or where there is the mere hint of such inadequacy, is unlikely to prove acceptable. Demonstrators, like wearable sensors in health care, will be used to explore and evaluate these research themes and their tension. New solutions are expected to come out of the majority of projects and demonstrators, many solutions will be generalisable to problems in other sectors, and all projects will produce valuable insights. A robust governance and management structure will ensure good management of the research portfolio, excellent user engagement and focussed coordination of impact from deliverables. The Hub will further draw on the expertise, networks, and on-going projects of its members to create a cross-disciplinary language for sharing problems and solutions across research domains, industrial sectors, and government departments. This common language will enhance the outreach, development, and training activities of the Hub.


Black R.M.,UK Defence Science and Technology Laboratory
Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences | Year: 2010

This paper provides a short historical overview of the development of bioanalytical methods for chemical warfare (CW) agents and their biological markers of exposure, with a more detailed overview of methods for organophosphorus nerve agents. Bioanalytical methods for unchanged CW agents are used primarily for toxicokinetic/toxicodynamic studies. An important aspect of nerve agent toxicokinetics is the different biological activity and detoxification pathways for enantiomers. CW agents have a relatively short lifetime in the human body, and are hydrolysed, metabolised, or adducted to nucleophilic sites on macromolecules such as proteins and DNA. These provide biological markers of exposure. In the past two decades, metabolites, protein adducts of nerve agents, vesicants and phosgene, and DNA adducts of sulfur and nitrogen mustards, have been identified and characterized. Sensitive analytical methods have been developed for their detection, based mainly on mass spectrometry combined with gas or liquid chromatography. Biological markers for sarin, VX and sulfur mustard have been validated in cases of accidental and deliberate human exposures. The concern for terrorist use of CW agents has stimulated the development of higher throughput analytical methods in support of homeland security. © 2010.


Thomas R.J.,UK Defence Science and Technology Laboratory
Virulence | Year: 2013

Particle size dictates where aerosolized pathogens deposit in the respiratory tract, thereafter the pathogens potential to cause disease is influenced by tissue tropism, clearance kinetics and the host immunological response. This interplay brings pathogens into contact with a range of tissues spanning the respiratory tract and associated anatomical structures. In animal models, differential deposition within the respiratory tract influences infection kinetics for numerous select agents. Greater numbers of pathogens are required to infect the upper (URT) compared with the lower respiratory tract (LRT), and in comparison the URT infections are protracted with reduced mortality. Pathogenesis in the URT is characterized by infection of the URT lymphoid tissues, cervical lymphadenopathy and septicemia, closely resembling reported human infections of the URT. The olfactory, gastrointestinal, and ophthalmic systems are also infected in a pathogen-dependent manner. The relevant literature is reviewed with respect to particle size and infection of the URT in animal models and humans. © 2013 Landes Bioscience.


Grant
Agency: GTR | Branch: EPSRC | Program: | Phase: Research Grant | Award Amount: 858.32K | Year: 2015

Autonomous robots, capable of independent and intelligent navigation through unknown environments, have the potential to significantly increase human safety and security. They could replace people in potentially hazardous tasks, for instance search and rescue operations in disaster zones, or surveys of nuclear/chemical installations. Vision is one of the primary senses that can enable this capability, however, visual information processing is notoriously difficult, especially at speeds required for fast moving robots, and in particular where low weight, power dissipation and cost of the system are of concern. Conventional hardware and algorithms are not up to the task. The proposal here is to tightly integrate novel sensing and processing hardware, together with vision, navigation and control algorithms, to enable the next generation of autonomous robots. At the heart of the system will be a device known as a vision chip. This bespoke integrated circuit differs from a conventional image sensor, including a processor with each pixel. This will offer unprecedented performance. The massively parallel processor array will be programmed to pre-process images, passing higher-level feature information upstream to vision tracking algorithms and the control system. Feature extraction at pixel level results in an extremely efficient and high speed throughput of information. Another feature of the new vision chip will be the measurement of time of flight data in each pixel. This will allow the distance to a feature to be extracted and combined with the image plane data for vision tracking, simplifying and speeding up the real-time state estimation and mapping capabilities. Vision algorithms will be developed to make the most optimal use of this novel hardware technology. This project will not only develop a unique vision processing system, but will also tightly integrate the control system design. Vision and control systems have been traditionally developed independently, with the downstream flow of information from sensor through to motor control. In our system, information flow will be bidirectional. Control system parameters will be passed to the image sensor itself, guiding computational effort and reducing processing overheads. For example a rotational demand passed into the control system, will not only result in control actuation for vehicle movement, but will also result in optic tracking along the same path. A key component of the project will therefore be the management and control of information across all three layers: sensing, visual perception and control. Information share will occur at multiple rates and may either be scheduled or requested. Shared information and distributed computation will provide a breakthrough in control capabilities for highly agile robotic systems. Whilst applicable to a very wide range of disciplines, our system will be tested in the demanding field of autonomous aerial robotics. We will integrate the new vision sensors onboard an unmanned air vehicle (UAV), developing a control system that will fully exploit the new tracking capabilities. This will serve as a demonstration platform for the complete vision system, incorporating nonlinear algorithms to control the vehicle through agile manoeuvres and rapidly changing trajectories. Although specific vision tracking and control algorithms will be used for the project, the hardware itself and system architecture will be applicable to a very wide range of tasks. Any application that is currently limited by tracking capabilities, in particular when combined with a rapid, demanding control challenge would benefit from this work. We will demonstrate a step change in agile, vision-based control of UAVs for exploration, and in doing so develop an architecture which will have benefits in fields as diverse as medical robotics and industrial production.

Discover hidden collaborations