Time filter

Source Type

Chicago Ridge, IL, United States

Pan S.,Harbin Medical University | Niu Y.,Harbin Medical University | Luan X.,UIC Brodie Laboratory for Craniofacial Genetics
Stem Cell Reviews and Reports | Year: 2013

Stem cell factor (SCF) is a powerful chemokine that binds to the c-Kit receptor CD117 and has shown promise as a homing agent capable of progenitor cell recruitment. In the present study we have documented high levels of both SCF and its receptor c-Kit in differentiating dental pulp (DP) cells and in the sub-odontoblastic layer of Höhl. In vitro studies using human DP progenitors revealed a significant increase in cell proliferation after100 nM SCF application, explained by a 2-fold upregulation in cyclin D3 and FGF2 cell cycle regulators, and a 7-fold increase in CDK4 expression. DP cell migration in the presence of SCF was up-regulated 2.7-fold after a 24 h culture period, and this effect was accompanied by cytoskeletal rearrangement, a 1.5-fold increase in polymeric F-actin over G-actin, and a 1.8-fold increase in RhoA expression. Explaining the signaling effect of SCF on DP migration, PI3K/Akt and MEK/ERK pathway inhibitors were demonstrated to significantly reduce DP cell migration, while SCF alone doubled the number of migrated cells. ERK and AKT phosphorylation were dramatically upregulated already 3-5 min after SCF addition to the culture medium and declined thereafter, classifying SCF as a fast acting chemokine. When applied as an agent to promote tissue regeneration in subcutaneously implanted collagen sponges, SCF resulted in a 7-fold increase in the cell number in the implanted tissue construct, a more than 9-fold increase in capillaries, as well as collagen sponge remodeling and collagen fiber neogenesis. Together, these studies demonstrate the suitability of SCF as a potent aid in the regeneration of dental pulp and other mesenchymal tissues, capable of inducing cell homing, angiogenesis, and tissue remodeling. © 2013 Springer Science+Business Media New York. Source

Li Q.,Jilin University | Reed D.A.,UIC Brodie Laboratory for Craniofacial Genetics | Min L.,Jilin University | Gopinathan G.,UIC Brodie Laboratory for Craniofacial Genetics | And 12 more authors.
International Journal of Molecular Sciences | Year: 2014

Freeze-drying is an effective means to control scaffold pore size and preserve its composition. The purpose of the present study was to determine the applicability of lyophilized Platelet-rich fibrin (LPRF) as a scaffold for craniofacial tissue regeneration and to compare its biological effects with commonly used fresh Platelet-rich fibrin (PRF). LPRF caused a 4.8-fold ± 0.4-fold elevation in Runt-related transcription factor 2 (Runx2) expression in alveolar bone cells, compared to a 3.6-fold ± 0.2-fold increase when using fresh PRF, and a more than 10-fold rise of alkaline phosphatase levels and mineralization markers. LPRF-induced Runx2 expression only occurred in alveolar bone and not in periodontal or dental follicle cells. LPRF also caused a 1.6-fold increase in osteoblast proliferation (p < 0.001) when compared to fresh PRF. When applied in a rat craniofacial defect model for six weeks, LPRF resulted in 97% bony coverage of the defect, compared to 84% for fresh PRF, 64% for fibrin, and 16% without scaffold. Moreover, LPRF thickened the trabecular diameter by 25% when compared to fresh PRF and fibrin, and only LPRF and fresh PRF resulted in the formation of interconnected trabeculae across the defect. Together, these studies support the application of lyophilized PRF as a biomimetic scaffold for craniofacial bone regeneration and mineralized tissue engineering. © 2014 by the authors; licensee MDPI, Basel, Switzerland. Source

Discover hidden collaborations