Time filter

Source Type

Zinszer K.,McGill University | Kigozi R.,Uganda Malaria Surveillance Project | Charland K.,McGill University | Dorsey G.,University of California at San Francisco | And 4 more authors.
Malaria Journal | Year: 2015

Background: Malaria thrives in poor tropical and subtropical countries where local resources are limited. Accurate disease forecasts can provide public and clinical health services with the information needed to implement targeted approaches for malaria control that make effective use of limited resources. The objective of this study was to determine the relevance of environmental and clinical predictors of malaria across different settings in Uganda. Methods: Forecasting models were based on health facility data collected by the Uganda Malaria Surveillance Project and satellite-derived rainfall, temperature, and vegetation estimates from 2006 to 2013. Facility-specific forecasting models of confirmed malaria were developed using multivariate autoregressive integrated moving average models and produced weekly forecast horizons over a 52-week forecasting period. Results: The model with the most accurate forecasts varied by site and by forecast horizon. Clinical predictors were retained in the models with the highest predictive power for all facility sites. The average error over the 52 forecasting horizons ranged from 26 to 128% whereas the cumulative burden forecast error ranged from 2 to 22%. Conclusions: Clinical data, such as drug treatment, could be used to improve the accuracy of malaria predictions in endemic settings when coupled with environmental predictors. Further exploration of malaria forecasting is necessary to improve its accuracy and value in practice, including examining other environmental and intervention predictors, including insecticide-treated nets. © 2015 Zinszer et al.

Zinszer K.,McGill University | Charland K.,McGill University | Kigozi R.,Uganda Malaria Surveillance Project | Dorsey G.,University of California at San Francisco | And 2 more authors.
Bulletin of the World Health Organization | Year: 2014

Objective To illustrate the use of a new method for defining the catchment areas of health-care facilities based on their utilization. Methods The catchment areas of six health-care facilities in Uganda were determined using the cumulative case ratio: the ratio of the observed to expected utilization of a facility for a particular condition by patients from small administrative areas. The cumulative case ratio for malaria-related visits to these facilities was determined using data from the Uganda Malaria Surveillance Project. Catchment areas were also derived using various straight line and road network distances from the facility. Subsequently, the 1-year cumulative malaria case rate was calculated for each catchment area, as determined using the three methods. Findings The 1-year cumulative malaria case rate varied considerably with the method used to define the catchment areas. With the cumulative case ratio approach, the catchment area could include noncontiguous areas. With the distance approaches, the denominator increased substantially with distance, whereas the numerator increased only slightly. The largest cumulative case rate per 1000 population was for the Kamwezi facility: 234.9 (95% confidence interval, CI: 226.2-243.8) for a straight-line distance of 5 km, 193.1 (95% CI: 186.8-199.6) for the cumulative case ratio approach and 156.1 (95% CI: 150.9-161.4) for a road network distance of 5 km. Conclusion Use of the cumulative case ratio for malaria-related visits to determine health-care facility catchment areas was feasible. Moreover, this approach took into account patients' actual addresses, whereas using distance from the facility did not.

Pullan R.L.,London School of Hygiene and Tropical Medicine | Kabatereine N.B.,Ministry of Health | Bukirwa H.,Uganda Malaria Surveillance Project | Staedke S.G.,London School of Hygiene and Tropical Medicine | And 2 more authors.
Journal of Infectious Diseases | Year: 2011

Background. Previous studies have suggested that helminth infection exacerbates malaria, but few existing epidemiological studies adequately control for infection heterogeneities and confounding factors. In this study, we investigate spatial and household heterogeneities, predictors, and consequences of Plasmodium species and hookworm coinfection in rural communities in Uganda. Methods. A cross-sectional study was conducted among 1770 individuals aged 0-88 years in 4 villages. We recorded demographic, socioeconomic, and microgeographic factors during household surveys. We determined malaria parasitemia and hemoglobin concentration and collected stool samples on 2 consecutive days. For data analysis, we used a hierarchical, spatially explicit Bayesian framework. Results. Prevalence of Plasmodium-hookworm coinfection was 15.5% overall and highest among school-aged children. We found strong evidence of spatial and household clustering of coinfection and an enduring positive association between Plasmodium-species and hookworm infection among preschool-aged children (odds ratio [OR], 2.36; 95% Bayesian credible interval [BCI], 1.26-4.30) and adults (OR, 2.09; 95% BCI, 1.35-3.16) but not among school-aged children. Coinfection was associated with lower hemoglobin level only among school-aged children. Conclusions. Plasmodium-hookworm coinfection exhibits marked age dependency and significant spatial and household heterogeneity, and among preschool-aged children and adults, occurs more than would be expected by chance. Such heterogeneities provide insight into factors underlying observed patterns and the design of integrated control strategies. © The Author 2010. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved.

Yeka A.,Uganda Malaria Surveillance Project | Harris J.C.,University of California at San Francisco
Current Opinion in Pediatrics | Year: 2010

Purpose of Review: In response to increased resistance to conventional drugs, the WHO is promoting artemisinin-based combination therapy (ACT) for treating uncomplicated malaria. The objective of this report is to review the available evidence on the efficacy and effectiveness, acceptability, and deployment of ACT in resource-limited settings with a focus on sub-Saharan Africa. Recent Findings: ACTs are very effective in the treatment of uncomplicated Plasmodium falciparum malaria in children. ACTs are relatively safe and tolerable with no reported resistance in sub-Saharan Africa despite indications of delayed clearance of infections in south-east Asia. The major challenges to the widespread use of ACT include its high cost, availability, and inefficient delivery due to, among other things, weak healthcare systems. Summary: ACTs are an essential tool in the fight to control and eliminate malaria. They are currently the most effective drugs against P. falciparum malaria. They should be deployed through programs that address availability, cost, adherence, and quality assurance. Initiatives including home-based management of malaria, improving public sector procurement and supply chains, and reducing private sector pricing should make ACTs more accessible for sub-Saharan African children who bear the brunt of the burden of malarial disease. © 2010 Wolters Kluwer Health | Lippincott Williams & Wilkins.

Banek K.,Uganda Malaria Surveillance Project | Kilian A.,Malaria Consortium | Allan R.,MENTOR Initiative
Malaria Journal | Year: 2010

Background. By 2008, the WHO Pesticide Evaluation Scheme (WHOPES) recommended five long-lasting insecticidal nets (LLINs) for the prevention of malaria: Olyset®, PermaNet 2.0®, Netprotect®, Duranet® and Interceptor®. Field information is available for both Olyset® and PermaNet®, with limited data on the newer LLINs. To address this gap, a field evaluation was carried out to determine the acceptability and durability of Interceptor® LLINs. Methods. A one-year prospective field study was conducted in eight rural returnee villages in Liberia. Households were randomized to receive Interceptor® LLINs or conventionally treated nets (CTNs). Primary outcomes were levels of residual alpha-cypermethrin measured by HPLC and participant utilization/acceptability of the ITNs. Results. A total of 398 nets were analysed for residual alpha-cypermethrin. The median baseline concentrations of insecticide were 175.5 mg/m2 for the Interceptor® LLIN and 21.8 mg/m2 for the CTN. Chemical residue loss after a one year follow-up period was 22% and 93% respectively. Retention and utilization of nets remained high (94%) after one year, irrespective of type, while parasitaemia prevalence decreased from 29.7% at baseline to 13.6% during the follow up survey (p = < 0.001). Interview and survey data show perceived effectiveness of ITNs was just as important as other physical attributes in influencing net utilization. Conclusion. Interceptor® LLINs are effective and desirable in rural communities in Liberia. Consideration for end user preferences should be incorporated into product development of all LLINs in the future, in order to achieve optimum retention and utilization. © 2010 Banek et al.

Discover hidden collaborations