Time filter

Source Type

Rovero F.,Tropical Biodiversity section | Rovero F.,Udzungwa Ecological Monitoring Center | Mtui A.S.,Udzungwa Ecological Monitoring Center | Kitegile A.S.,Udzungwa Ecological Monitoring Center | And 2 more authors.
Biological Conservation

Hunting and habitat degradation are universal threats to primates across the tropics, thus deciphering the relative impact of threats on population relative abundance is critical to predicting extinction risk and providing conservation recommendations. We studied diurnal primates over a period of nearly 6. years in the Udzungwa Mountains of Tanzania, a site of global importance for primate conservation. We assessed how population relative abundance of five species (of which two are endemic and IUCN-Endangered) differed between two forest blocks that are similar in size and habitat types but contrast strongly in protection level, and how abundance changed during 2004-2009. We also measured habitat and disturbance parameters and, in the unprotected forest, evaluated hunting practices. We found significant differences in primates' abundance between protected and unprotected forests, with the greater contrast being the lower abundance of colobine monkeys (Udzungwa red colobus and Angolan colobus) in the unprotected forest. At this site moreover, colobines declined to near-extinction over the study period. In contrast, two cercopithecines (Sanje mangabey and Sykes' monkey) showed slightly higher abundance in the unprotected forest and did not decline significantly. We argue that escalating hunting in the unprotected forest has specifically impacted the canopy-dwelling colobus monkeys, although habitat degradation may also have reduced their abundance. In contrast, cercopithecines did not seem affected by the current hunting, and their greater ecological adaptability may explain the relatively higher abundance in the unprotected forest. We provide recommendations towards the long-term protection of the area. © 2011 Elsevier Ltd. Source

Jones T.,Udzungwa Elephant Project | Jones T.,Anglia Ruskin University | Bamford A.J.,Society for Environmental Exploration | Ferrol-Schulte D.,Society for Environmental Exploration | And 5 more authors.
Tropical Conservation Science

Conserving wildlife corridors is increasingly important for maintaining ecological and genetic connectivity in times of unprecedented habitat fragmentation. Documenting connectivity loss, assessing root causes, and exploring restoration options are therefore priority conservation goals. A 2009 nationwide assessment in Tanzania documented 31 major remaining corridors, the majority of which were described as threatened. The corridor between the Udzungwa Mountains and the Selous Game Reserve in south-central Tanzania, a major link between western and southern wildlife communities, especially for the African elephant Loxodonta africana, provides an illuminating case study. A preliminary assessment in 2005 found that connectivity was barely persisting via two remaining routes. Here we present assessments of these two corridors conducted from 2007-2010, using a combination of dung surveys, habitat mapping and questionnaires. We found that both corridor routes have become closed over the last five years. Increased farming and livestock keeping, associated with both local immigration and population growth, were the main reasons for corridor blockage. However, continued attempts by elephants to cross by both routes suggest that connectivity can be restored. This entails a process of harmonizing differing land owners and uses towards a common goal. We provide recommendations for restoring lost connectivity and discuss the prospects for preventing further loss of corridors across the country. © Trevor Jones, Andrew J. Bamford, Daniella Ferrol-Schulte, Proches Hieronimo, Nicholas McWilliam and Francesco Rovero. Source

Araldi A.,Reproductive Biology Unit | Barelli C.,Reproductive Biology Unit | Barelli C.,Research and Innovation Center Fondazione Edmund Machinery | Hodges K.,Reproductive Biology Unit | And 2 more authors.
International Journal of Primatology

Estimates of population density and abundance are essential for the assessment of nonhuman primate conservation status, especially in view of increasing threats. We undertook the most extensive systematic primate survey yet of the Udzungwa Mountains of Tanzania, an outstanding region for primate endemism and conservation in Africa. We used distance sampling to survey three arboreal monkey species, including the endangered and endemic Udzungwa red colobus (Procolobus gordonorum). Overall, we encountered 306 primate clusters over 287 km walked along 162 line transects. We found the lowest cluster densities for both red colobus and Angolan colobus (Colobus angolensis; 0.8 clusters/km2) in the least protected forest (Uzungwa Scarp Forest Reserve, US), while we found the highest densities (3.2 and 2.6 clusters/km2 for red colobus; 3.2 and 2.7 clusters/km2for Angolan colobus) in two large and protected forests in the national park. Unexpectedly, Magombera, a small forest surrounded by plantations, had the highest densities of red colobus (5.0 clusters/km2), most likely a saturation effect due to the rapid shrinking of the forest. In contrast, Sykes’ monkey (Cercopithecus mitis monoides/moloneyi) had more similar densities across forests (3.1–6.6 clusters/km2), including US, suggesting greater resilience to disturbance in this species. For the endemic red colobus monkey, we estimated an abundance of 45–50,000 individuals across all forests, representing ca. 80% of the global population. Though this is a relatively high abundance, the increasing threats in some of the Udzungwa forests are of continued concern for the long-term survival of red colobus and other primates in the area. © 2014, Springer Science+Business Media New York. Source

Marshall A.R.,University of York | Marshall A.R.,Flamingo Land Ltd. | Jorgensbye H.I.O.,Copenhagen University | Rovero F.,Tropical Biodiversity | And 4 more authors.
American Journal of Primatology

This study investigates the species-area relationship (SAR) for forest monkeys in a biodiversity hotspot. The Udzungwa Mountains of Tanzania are well-suited to investigate the SAR, with seven monkey species in a range of fragment sizes (0.06-526 km2). We test the relationship between species richness and forest fragment size, relative to human and environmental factors. We distinguish resident and transitory species because the latter have an "effective patch size" beyond the area of forest. Forest area was the strongest (log-linear) predictor of species richness. However, forest area, elevation range and annual moisture index were intercorrelated. Previous knowledge of the relationship between elevation and tree communities suggests that the SAR is largely a result of habitat heterogeneity. Isolation by farmland (matrix habitat) also had a significant negative effect on species richness, probably exacerbated by hunting in small forests. The effect of area and isolation was less for transitory species. The human influence on species' presence/absence was negatively related to the extent of occurrence. Weaker relationships with temperature and precipitation suggest underlying climatic influences, and give some support for the influence of productivity. A reduced area relationship for smaller forests suggests that fragment sizes below 12-40km2 may not be reliable for determining SAR in forest monkeys. Further practical implications are for management to encourage connectivity, and for future SAR research to consider residency, matrix classification and moisture besides precipitation. © 2009 Wiley-Liss, Inc. Source

Rovero F.,Sezione di Biodiversita Tropicale | Rovero F.,Udzungwa Ecological Monitoring Center | Zimmermann F.,KORA | Berzi D.,Canis lupus Italia | And 2 more authors.

Automatically triggered cameras taking photographs or videos of passing animals (camera traps) have emerged over the last decade as one of the most powerful tool for wildlife research. In parallel, a wealth of camera trap systems and models has become commercially available, a phenomenon mainly driven by the increased use of camera traps by sport hunters. This has raised the need for developing criteria to choose the suitable camera trap model in relation to a range of factors, primarily the study aim, but also target species, habitat, trapping site, climate and any other aspect that affects camera performance. There is also fragmented information on the fundamentals of sampling designs that deploy camera trapping, such as number of sampling sites, spatial arrangement and sampling duration. In this review, we describe the relevant technological features of camera traps and propose a set of the key ones to be evaluated when choosing camera models. These features are camera specifications such as trigger speed, sensor sensitivity, detection zone, flash type and flash intensity, power autonomy, and related specifications. We then outline sampling design and camera features for the implementation of major camera trapping applications, specifically: (1) faunal inventories, (2) occupancy studies, (3) density estimation through Capture-Mark-Recapture and (4) density estimation through the Random Encounter Model. We also review a range of currently available models and stress the need for standardized testing of camera models that should be frequently updated and widely distributed. Finally we summarize the "ultimate camera trap", as desired by wildlife biologists, and the current technological limitations of camera traps in relation to their potential for a number of emerging applications. © 2013 Associazione Teriologica Italiana. Source

Discover hidden collaborations