Entity

Time filter

Source Type

UAC
Estación Coahuila, Mexico

Gaytan-Martinez M.,CICATA Del IPN | Gaytan-Martinez M.,CINVESTAV | Figueroa J.D.C.,CINVESTAV | Vazquez-Landaverde P.A.,CICATA Del IPN | And 3 more authors.
CYTA - Journal of Food | Year: 2012

Chemical composition, water absorption capacity (WAC), water absorption index (WAI), water solubility index (WSI), viscosity, yield, moisture, and texture in flour and tortilla were determined in nixtamalized corn flour (NCF) obtained by ohmic heating (FOH), traditional process (FTP) and commercial (FC). The viscosity, CAA, WAI, and WSI showed that FOH had different degrees of gelatinization. Masa and tortilla from FOH showed higher moisture content (58.25 to 53.62 g/100 g) than FTP (52.67 g/ 100 g), presenting appropriated texture and higher tortilla yielding. The protein content of FOH was higher (8.51 to 8.23%) than FTP (7.95%). Dietary fiber content was higher in FOH compared to FTP and FC tortillas (P< 0.05). Ohmic heating is a new alternative to obtain NCF. © 2012 Taylor & Francis. Source


Da Silva M.E.,Federal University of Vicosa | Braga F.R.,University Vila Velha | De Gives P.M.,Area de Helmintologia | Uriostegui M.A.M.,Area de Helmintologia | And 5 more authors.
BioMed Research International | Year: 2015

The biocontrol is proven effective in reducing in vitro and in situ free-living stages of major gastrointestinal helminths, allowing progress in reducing losses by parasitism, maximizing production, and productivity. This study aimed at evaluating the predatory activity of fungal isolates of Duddingtonia flagrans and Clonostachys rosea species and its association on infective larvae (L3) of H. contortus in microplots formed by grasses and maintained in a protected environment. All groups were added with 10 mL of an aqueous suspension with 618 H. contortus L3 approximately. Group 1 was used as control and only received the infective larvae. Groups 2 and 3 received D. flagrans chlamydospores and C. rosea conidia at doses of 5 × 106. Group 4 received the combination of 5 × 106 D. flagrans chlamydospores + 5 × 106 C. rosea conidia. D. flagrans and C. rosea showed nematicidal effectiveness reducing by 91.5 and 88.9%, respectively, the population of H. contortus L3. However, when used in combination efficiency decreased to 74.5% predation of H. contortus L3. These results demonstrate the need for further studies to determine the existence of additive effects, synergistic or antagonistic, between these species. © 2015 Manoel Eduardo da Silva et al. Source


Abstract: Nanoparticles designed to block a cell-surface molecule that plays a key role in inflammation could be a safe treatment for inflammatory bowel disease (IBD), according to researchers in the Institute for Biomedical Sciences at Georgia State University and Southwest University in China. The scientists developed nanoparticles, or microscopic particles, to reduce the expression of CD98, a glycoprotein that promotes inflammation. Their findings are published in the journal Colloids and Surfaces B: Biointerfaces. "Our results suggest this nanoparticle could potentially be used as an efficient therapeutic treatment for inflammation," said Didier Merlin, professor in the Institute for Biomedical Sciences at Georgia State and researcher at the Atlanta Veterans Affairs Medical Center. "We targeted CD98 because we determined in a previous study that CD98 is highly over-expressed in activated immune cells involved in IBD." In the United States, as many as 1.3 million people suffer from IBD, which includes ulcerative colitis and Crohn's disease, conditions with chronic or recurring abnormal response to the body's immune system and inflammation of the gastrointestinal tract. IBD gets worse over time and causes severe gastrointestinal symptoms, such as persistent diarrhea, cramping abdominal pain, fever, rectal bleeding, loss of appetite and weight loss. Surgery is required when medication can no longer control the symptoms, and patients also have an increased risk of colon cancer, according to the Centers for Disease Control and Prevention. This study suggests the development of nanotherapeutic strategies could be an alternative to currently available drugs, which are limited by serious side effects, in treating inflammatory conditions such as IBD. In the study, researchers formed the nanoparticles by combining CD98 siRNA, small interfering RNA that inhibit CD98 gene expression in macrophages (immune cells involved in IBD), with urocanic acid-modified chitosan (UAC). Chitosan is a polysaccharide obtained from the hard outer skeleton of shellfish. When introduced to macrophages, the nanoparticles had an anti-inflammatory effect on these immune cells. Researchers found the nanoparticles had a desirable particle size and no apparent toxicity against macrophages and colon epithelial cells. Cell studies showed nanoparticles with a weight ratio of 60:1 (UAC:siCD98) had the best anti-inflammatory capacity. ### Co-authors of the study include Emilie Viennois from the Institute for Biomedical Sciences at Georgia State and Atlanta Veterans Affairs Medical Center; Panpan Ma of Southwest University in Chongqing, China; and Bo Xiao from the Institute for Biomedical Sciences at Georgia State and Southwest University in Chongqing, China. The study was funded by the Department of Veterans Affairs, the National Institutes of Health's National Institute of Diabetes and Digestive and Kidney Diseases, and the National Natural Science Foundation of China. For more information, please click If you have a comment, please us. Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.


News Article | April 8, 2016
Site: http://www.cemag.us/rss-feeds/all/rss.xml/all

​Nanoparticles designed to block a cell-surface molecule that plays a key role in inflammation could be a safe treatment for inflammatory bowel disease (IBD), according to researchers in the Institute for Biomedical Sciences at Georgia State University and Southwest University in China. The scientists developed nanoparticles, or microscopic particles, to reduce the expression of CD98, a glycoprotein that promotes inflammation. Their findings are published in the journal Colloids and Surfaces B: Biointerfaces. “Our results suggest this nanoparticle could potentially be used as an efficient therapeutic treatment for inflammation,” says Didier Merlin, professor in the Institute for Biomedical Sciences at Georgia State and researcher at the Atlanta Veterans Affairs Medical Center. “We targeted CD98 because we determined in a previous study that CD98 is highly over-expressed in activated immune cells involved in IBD.” In the U.S., as many as 1.3 million people suffer from IBD, which includes ulcerative colitis and Crohn’s disease, conditions with chronic or recurring abnormal response to the body’s immune system and inflammation of the gastrointestinal tract. IBD gets worse over time and causes severe gastrointestinal symptoms, such as persistent diarrhea, cramping abdominal pain, fever, rectal bleeding, loss of appetite, and weight loss. Surgery is required when medication can no longer control the symptoms, and patients also have an increased risk of colon cancer, according to the Centers for Disease Control and Prevention. This study suggests the development of nanotherapeutic strategies could be an alternative to currently available drugs, which are limited by serious side effects, in treating inflammatory conditions such as IBD. In the study, researchers formed the nanoparticles by combining CD98 siRNA, small interfering RNA that inhibit CD98 gene expression in macrophages (immune cells involved in IBD), with urocanic acid-modified chitosan (UAC). Chitosan is a polysaccharide obtained from the hard outer skeleton of shellfish. When introduced to macrophages, the nanoparticles had an anti-inflammatory effect on these immune cells. Researchers found the nanoparticles had a desirable particle size and no apparent toxicity against macrophages and colon epithelial cells. Cell studies showed nanoparticles with a weight ratio of 60:1 (UAC:siCD98) had the best anti-inflammatory capacity. Co-authors of the study include Emilie Viennois from the Institute for Biomedical Sciences at Georgia State and Atlanta Veterans Affairs Medical Center; Panpan Ma of Southwest University in Chongqing, China; and Bo Xiao from the Institute for Biomedical Sciences at Georgia State and Southwest University in Chongqing, China. The study was funded by the Department of Veterans Affairs, the National Institutes of Health’s National Institute of Diabetes and Digestive and Kidney Diseases, and the National Natural Science Foundation of China. Source: University of Georgia


Paeth H.,University of Wurzburg | Hall N.M.,Toulouse 1 University Capitole | Gaertner M.A.,University of Castilla - La Mancha | Alonso M.D.,University of Castilla - La Mancha | And 13 more authors.
Atmospheric Science Letters | Year: 2011

We review the recent progress in dynamical and statistical downscaling approaches for west African precipitation and perform a regional climate model (RCM) intercomparison using the novel multi-model RCM data set from the Ensembles-based Predictions of Climate Changes and Their Impacts (ENSEMBLES) and African Monsoon Multidisciplinary Analyses (AMMA) projects. Present RCMs have distinct systematic errors in terms of west African precipitation varying in amplitude and pattern across models. This is also reflected in a relatively large spread in projected future precipitation trends. Altogether, the ENSEMBLES RCMs indicate a prevailing drying tendency in sub-Saharan Africa. Statistical post-processing of simulated precipitation is a promising tool to reduce systematic model errors before application in impact studies. Copyright © 2011 Royal Meteorological Society. Source

Discover hidden collaborations