Entity

Time filter

Source Type


Hagenbuchner J.,Tyrolean Cancer Research Institute | Kuznetsov A.,Cardiac Research Laboratory | Hausott B.,Innsbruck Medical University | Obexer P.,Tyrolean Cancer Research Institute | Ausserlechner M.J.,Tyrolean Cancer Research Institute
Journal of Cell Science | Year: 2012

FOXO transcription factors induce apoptosis and regulate cellular production of reactive oxygen species (ROS). To identify the sequence of molecular events underlying FOXO3 (FKHRL1)-induced apoptosis, we studied the regulation and function of FOXO3 by expressing an ECFP-tagged FOXO3 or a 4OH-tamoxifen (4OHT)-inducible FOXO3-ERtm fusion protein in SH-EP and STA-NB15 neuronal cells. After knockdown of FOXO3 or expression of a dominant-negative FOXO3 mutant we observed that etoposide- and doxorubicin-induced elevation of cellular ROS depends on FOXO3 activation and induction of its transcriptional target BCL2L11 (Bim). Activation of FOXO3 on its own induced two sequential ROS waves as measured by reduced MitoTrackerRed in live cell microscopy. Induction of Bim by FOXO3 is essential for this phenomenon because Bim knockdown or ectopic expression of BCL2L1 (BclxL) prevented FOXO3-mediated overproduction of ROS and apoptosis. Tetracycline-controlled expression of Bim impaired mitochondrial respiration and caused ROS production, suggesting that FOXO3 induces uncoupling of mitochondrial respiration through Bim. FOXO3 also activated a ROS rescue pathway by inducing the peroxiredoxin SESN3 (Sestrin3), which is responsible for the biphasic ROS accumulation. Knockdown of SESN3 caused an increase of FOXO3-induced ROS and accelerated apoptosis. The combined data clearly demonstrate that FOXO3 activates overproduction of ROS as a consequence of Bim-dependent impairment of mitochondrial respiration in neuronal cells, which leads to apoptosis. © 2012. Source


Neumann B.,Leibniz Institute for Primate Research | Klippert A.,Leibniz Institute for Primate Research | Raue K.,Leibniz Institute for Primate Research | Raue K.,University of Veterinary Medicine Hannover | And 4 more authors.
Journal of Leukocyte Biology | Year: 2015

B cells, as an important part of the humoral immune response, are generated in the BM, migrate to secondary lymphoid organs, and upon activation, differentiate into antibody-producing memory B cells or plasma cells. Despite the pivotal roles that they play in different diseases, a comprehensive characterization in healthy rhesus macaques, which serve as valuable models for a variety of human diseases, is still missing. With the use of multiparameter flow cytometry, we analyzed B cells in BM collected from two locations, i.e., the iliac crest (BMca) and the femur (BMfem), PB, as well as second-ary lymphoid organs of healthy rhesus macaques. We assessed the frequencies of immature and mature B cells, as well as CD19+ CD20- CD38+/++ CD138+/++ Plasmablasts/plasma cells. Furthermore, we found site-specific differences in the expression of markers for B cell activation and proliferation, chemokine receptors and Igs, as well as the distribution of memory B cell subpopulations. As secondary lymphoid organs harbor the highest frequencies of naive B cells, expression of CD80, CD95, and Ki67 was lower compared with B cells in the periphery and BM, whereas expression of IgD, CXCR4 (CD184), and CCR7 (CD197) was higher. Interestingly, BMca differed from BMfem regarding frequencies of b cells, their expression of CD80 and CXCR4, T cells, and plasma cells. In summary, these data identify baseline values for the above-mentioned parameters and provide the foundation for future studies on B arid plasma cells in different diseases. © Society for Leukocyte Biology. Source


Saez A.J.G.,University of Tubingen | Villunger A.,Innsbruck Medical University | Villunger A.,Tyrolean Cancer Research Institute
Genes and Development | Year: 2016

The minimum requirement for mitochondrial apoptosis has been controversial ever since the discovery of BCL-2 as a cell death regulator. In this issue of Genes & Development, O’Neill and colleagues (pp. 973–988) end a long-standing debate by creating a cellular system free of BCL-2 family proteins, thereby identifying the outer mitochondrial membrane rather than BH3-only proteins as the only requirement for BAX/BAK activation and mitochondrial outer membrane permeabilization (MOMP). © 2016 Sáez and Villunger. Source


Mikolcevic P.,Innsbruck Medical University | Mikolcevic P.,Barcelona Institute for Research in Biomedicine | Rainer J.,Innsbruck Medical University | Rainer J.,Tyrolean Cancer Research Institute | Geley S.,Innsbruck Medical University
Cell Cycle | Year: 2012

PCTAIRE kinases (PCTK) are a highly conserved, but poorly characterized, subgroup of cyclin-dependent kinases (CDK). They are characterized by a conserved catalytic domain flanked by N- and C-terminal extensions that are involved in cyclin binding. Vertebrate genomes contain three highly similar PCTAIRE kinases (PCTK1,2,3, a.k.a., CDK16,17,18), which are most abundant in post-mitotic cells in brain and testis. Consistent with this restricted expression pattern, PCTK1 (CDK16) has recently been shown to be essential for spermatogenesis. PCTAIRE s are activated by cyclin Y (CCNY), a highly conserved single cyclin fold protein. By binding to N-myristoylated CCNY, CDK16 is targeted to the plasma membrane. Unlike conventional cyclin-CDK interactions, binding of CCNY to CDK16 not only requires the catalytic domain, but also domains within the N-terminal extension. Interestingly, phosphorylation within this domain blocks CCNY binding, providing a novel means of cyclin-CDK regulation. By using these functional characteristics, we analyzed "PCTAIRE" sequence containing protein kinase genes in genomes of various organisms and found that CCNY and CCNY-dependent kinases are restricted to eumetazoa and possibly evolved along with development of a central nervous system. Here, we focus on the structure and regulation of PCTAIRE s and discuss their established functions. ©2012 Landes Bioscience. Source


Martowicz A.,Tyrolean Cancer Research Institute | Spizzo G.,Tyrolean Cancer Research Institute | Gastl G.,Tyrolean Cancer Research Institute | Gastl G.,Innsbruck Medical University | Untergasser G.,Innsbruck Medical University
BMC Cancer | Year: 2012

Background: The epithelial cell adhesion molecule (EpCAM) has been shown to be overexpressed in breast cancer and stem cells and has emerged as an attractive target for immunotherapy of breast cancer patients. This study analyzes the effects of EpCAM on breast cancer cell lines with epithelial or mesenchymal phenotype.Methods: For this purpose, shRNA-mediated knockdown of EpCAM gene expression was performed in EpCAMhigh breast cancer cell lines with epithelial phenotype (MCF-7, T47D and SkBR3). Moreover, EpCAMlow breast carcinoma cell lines with mesenchymal phenotype (MDA-MB-231, Hs578t) and inducible overexpression of EpCAM were used to study effects on proliferation, migration and in vivo growth.Results: In comparison to non-specific silencing controls (n/s-crtl) knockdown of EpCAM (E#2) in EpCAMhigh cell lines resulted in reduced cell proliferation under serum-reduced culture conditions. Moreover, DNA synthesis under 3D culture conditions in collagen was significantly reduced. Xenografts of MCF-7 and T47D cells with knockdown of EpCAM formed smaller tumors that were less invasive. EpCAMlow cell lines with tetracycline-inducible overexpression of EpCAM showed no increased cell proliferation or migration under serum-reduced growth conditions. MDA-MB-231 xenografts with EpCAM overexpression showed reduced invasion into host tissue and more infiltrates of chicken granulocytes.Conclusions: The role of EpCAM in breast cancer strongly depends on the epithelial or mesenchymal phenotype of tumor cells. Cancer cells with epithelial phenotype need EpCAM as a growth- and invasion-promoting factor, whereas tumor cells with a mesenchymal phenotype are independent of EpCAM in invasion processes and tumor progression. These findings might have clinical implications for EpCAM-based targeting strategies in patients with invasive breast cancer. © 2012 Martowicz et al.; licensee BioMed Central Ltd. Source

Discover hidden collaborations