San Francisco, CA, United States
San Francisco, CA, United States
SEARCH FILTERS
Time filter
Source Type

Patent
Twist Bioscience | Date: 2016-11-30

Compositions, devices, methods and systems are provided for differential functionalization of a surface of a structure to support biopolymer synthesis. Provided herein are processes which include use of lamps, lasers, and/or microcontact printing to add functional groups to surfaces for the efficient and uniform synthesis of oligonucleic acids.


Patent
Twist Bioscience | Date: 2016-12-13

De novo synthesized large libraries of nucleic acids are provided herein with low error rates. Further, devices for the manufacturing of high-quality building blocks, such as oligonucleotides, are described herein. Longer nucleic acids can be synthesized in parallel using microfluidic assemblies. Further, methods herein allow for the fast construction of large libraries of long, high-quality genes. Devices for the manufacturing of large libraries of long and high-quality nucleic acids are further described herein.


Patent
Twist Bioscience | Date: 2016-09-21

Provided herein are compositions, devices, systems and methods for the generation and use of biomolecule-based information for storage. Further described herein are highly efficient methods for long term data storage with 100% accuracy in the retention of information. Additionally, devices described herein for de novo synthesis of oligonucleic acids encoding information related to the original source information may have a flexible material for oligonucleic acids extension.


Patent
Twist Bioscience | Date: 2016-09-16

Disclosed herein are methods for the generation of highly accurate oligonucleic acid libraries encoding for predetermined variants of a nucleic acid sequence. The degree of variation may be complete, resulting in a saturated variant library, or less than complete, resulting in a selective library of variants. The variant oligonucleic acid libraries described herein may designed for further processing by transcription or translation. The variant oligonucleic acid libraries described herein may be designed to generate variant RNA, DNA and/or protein populations. Further provided herein are method for identifying variant species with increased or decreased activities, with applications in regulating biological functions and the design of therapeutics for treatment or reduction of disease.


Patent
Twist Bioscience | Date: 2017-02-15

Methods and compositions are provided for assembly of large nucleic acids where the assembled large nucleic acids lack internal sequence modifications made during the assembly process.


Patent
Twist Bioscience | Date: 2016-05-16

Methods and devices for cell-free sorting and cloning of nucleic acid libraries are provided herein.


Patent
Twist Bioscience | Date: 2016-08-23

De novo synthesized large libraries of nucleic acids are provided herein with low error rates. Further, devices for the manufacturing of high-quality building blocks, such as oligonucleotides, are described herein. Longer nucleic acids can be synthesized in parallel using microfluidic assemblies. Further, methods herein allow for the fast construction of large libraries of long, high-quality genes. Devices for the manufacturing of large libraries of long and high-quality nucleic acids are further described herein.


Patent
Twist Bioscience | Date: 2016-06-20

De novo synthesized large libraries of nucleic acids are provided herein with low error rates. Further, devices for the manufacturing of high-quality building blocks, such as oligonucleotides, are described herein. Longer nucleic acids can be synthesized in parallel using microfluidic assemblies. Further, methods herein allow for the fast construction of large libraries of long, high-quality genes. Devices for the manufacturing of large libraries of long and high-quality nucleic acids are further described herein.


Patent
Twist Bioscience | Date: 2016-06-20

De novo synthesized large libraries of nucleic acids are provided herein with low error rates. Further, devices for the manufacturing of high-quality building blocks, such as oligonucleotides, are described herein. Longer nucleic acids can be synthesized in parallel using microfluidic assemblies. Further, methods herein allow for the fast construction of large libraries of long, high-quality genes. Devices for the manufacturing of large libraries of long and high-quality nucleic acids are further described herein.


Patent
Twist Bioscience | Date: 2016-08-10

De novo synthesized large libraries of nucleic acids are provided herein with low error rates. Further, devices for the manufacturing of high-quality building blocks, such as oligonucleotides, are described herein. Longer nucleic acids can be synthesized in parallel using microfluidic assemblies. Further, methods herein allow for the fast construction of large libraries of long, high-quality genes. Devices for the manufacturing of large libraries of long and high-quality nucleic acids are further described herein

Loading Twist Bioscience collaborators
Loading Twist Bioscience collaborators