Entity

Time filter

Source Type

Nairobi, Kenya

Ward C.V.,University of Missouri | Feibel C.S.,Rutgers University | Hammond A.S.,University of Missouri | Hammond A.S.,State University of New York at Stony Brook | And 10 more authors.
Journal of Human Evolution | Year: 2015

During the evolution of hominins, it is generally accepted that there was a shift in postcranial morphology between Australopithecus and the genus Homo. Given the scarcity of associated remains of early Homo, however, relatively little is known about early Homo postcranial morphology. There are hints of postcranial diversity among species, but our knowledge of the nature and extent of potential differences is limited. Here we present a new associated partial ilium and femur from Koobi Fora, Kenya, dating to 1.9 Ma (millions of years ago) that is clearly attributable to the genus Homo but documents a pattern of morphology not seen in eastern African early Homo erectus. The ilium and proximal femur share distinctive anatomy found only in Homo. However, the geometry of the femoral midshaft and contour of the pelvic inlet do not resemble that of any specimens attributed to H.erectus from eastern Africa. This new fossil confirms the presence of at least two postcranial morphotypes within early Homo, and documents diversity in postcranial morphology among early Homo species that may reflect underlying body form and/or adaptive differences. © 2015 Elsevier Ltd. Source


Spoor F.,University College London | Spoor F.,Max Planck Institute for Evolutionary Anthropology | Leakey M.G.,Turkana Basin Institute | Leakey M.G.,State University of New York at Stony Brook | O'Higgins P.,University of York
Philosophical Transactions of the Royal Society B: Biological Sciences | Year: 2016

Geometric morphometric shape analyses are used to compare the maxillae of the Kenyanthropus platyops holotype KNM-WT 40000, the Australopithecus deyiremeda holotype BRT-VP-3/1 and other australopiths. The main aim is to explore the relationship between these two specimens and contemporary Australopithecus afarensis. Five landmarks placed on lateral views of the maxillae quantify key aspects of the morphology. Generalized Procrustes analyses and principal component analyses of the resulting shape coordinates were performed. The magnitudes of differences in shape and their significances were assessed using Procrustes and Mahalanobis’ distances, respectively. Both KNM-WT 40000 and BRT-VP-3/1 show statistically significant differences in maxillary shape from A. afarensis, but do so in dissimilar ways. Moreover, the former differs more from A. afarensis than the latter. KNM-WT 40000 has a more anteriorly positioned zygomatic process with a transversely flat, and more orthognathic subnasal clivus. BRT-VP-3/1 has a more inferiorly positioned zygomatic process, a slightly retracted dental arcade, but without shortening of the anterior maxilla. These findings are consistent with previous conclusions that the two fossils should be attributed to separate species, rather than to A. afarensis, and with the presence of three contemporary hominin species in the Middle Pliocene of eastern Africa. © 2016 The Author(s) Published by the Royal Society. All rights reserved. Source


Cerling T.E.,University of Utah | Chritz K.L.,University of Utah | Jablonski N.G.,Pennsylvania State University | Leakey M.G.,Turkana Basin Institute | And 2 more authors.
Proceedings of the National Academy of Sciences of the United States of America | Year: 2013

Theropithecus was a common large-bodied primate that cooccurred with hominins in many Plio-Pleistocene deposits in East and South Africa. Stable isotope analyses of tooth enamel from T. brumpti (4.0-2.5 Ma) and T. oswaldi (2.0-1.0 Ma) in Kenya show that the earliest Theropithecus at 4 Ma had a diet dominated by C4 resources. Progressively, this genus increased the proportion of C4-derived resources in its diet and by 1.0 Ma, had a diet that was nearly 100% C4-derived. It is likely that this diet was comprised of grasses or sedges; stable isotopes cannot, by themselves, give an indication of the relative importance of leaves, seeds, or underground storage organs to the diet of this primate. Theropithecus throughout the 4- to 1-Ma time range has a diet that is more C4-based than contemporaneous hominins of the genera Australopithecus, Kenyanthropus, and Homo; however, Theropithecus and Paranthropus have similar proportions of C4-based resources in their respective diets. Source


Sponheimer M.,University of Colorado at Boulder | Alemseged Z.,California Academy of Sciences | Cerling T.E.,University of Utah | Grine F.E.,State University of New York at Stony Brook | And 8 more authors.
Proceedings of the National Academy of Sciences of the United States of America | Year: 2013

Carbon isotope studies of early hominins from southern Africa showed that their diets differed markedly from the diets of extant apes. Only recently, however, has a major influx of isotopic data from eastern Africa allowed for broad taxonomic, temporal, and regional comparisons among hominins. Before 4 Ma, hominins had diets that were dominated by C3 resources and were, in that sense, similar to extant chimpanzees. By about 3.5 Ma, multiple hominin taxa began incorporating 13C-enriched [C4 or crassulacean acid metabolism (CAM)] foods in their diets and had highly variable carbon isotope compositions which are atypical for African mammals. By about 2.5 Ma, Paranthropus in eastern Africa diverged toward C4/CAM specialization and occupied an isotopic niche unknown in catarrhine primates, except in the fossil relations of grass-eating geladas (Theropithecus gelada). At the same time, other taxa (e.g., Australopithecus africanus) continued to have highly mixed and varied C3/C4 diets. Overall, there is a trend toward greater consumption of 13C-enriched foods in early hominins over time, although this trend varies by region. Hominin carbon isotope ratios also increase with postcanine tooth area and mandibular cross-sectional area, which could indicate that these foods played a role in the evolution of australopith masticatory robusticity. The 13C-enriched resources that hominins ate remain unknown and must await additional integration of existing paleodietary proxy data and new research on the distribution, abundance, nutrition, and mechanical properties of C4 (and CAM) plants. Source


Cerling T.E.,University of Utah | Mbua E.,National Museums of Kenya | Kirera F.M.,National Museums of Kenya | Manthi F.K.,National Museums of Kenya | And 6 more authors.
Proceedings of the National Academy of Sciences of the United States of America | Year: 2011

The East African hominin Paranthropus boisei was characterized by a suite of craniodental features that have been widely interpreted as adaptations to a diet that consisted of hard objects that required powerful peak masticatory loads. These morphological adaptations represent the culmination of an evolutionary trend that began in earlier taxa such as Australopithecus afarensis, and presumably facilitated utilization of open habitats in the Plio-Pleistocene. Here, we use stable isotopes to show that P. boisei had a diet that was dominated by C4 biomass such as grasses or sedges. Its diet included more C4 biomass than any other hominin studied to date, including its congener Paranthropus robustus from South Africa. These results, coupled with recent evidence from dental microwear, may indicate that the remarkable craniodental morphology of this taxon represents an adaptation for processing large quantities of low-quality vegetation rather than hard objects. Source

Discover hidden collaborations