Time filter

Source Type

Palmerston North, New Zealand

Han C.,Chungbuk National University | Udalski A.,University of Warsaw | Choi J.-Y.,Chungbuk National University | Yee J.C.,Ohio State University | And 34 more authors.
Astrophysical Journal Letters

We report the discovery of a planetary system from observation of the high-magnification microlensing event OGLE-2012-BLG-0026. The lensing light curve exhibits a complex central perturbation with multiple features. We find that the perturbation was produced by two planets located near the Einstein ring of the planet host star. We identify four possible solutions resulting from the well-known close/wide degeneracy. By measuring both the lens parallax and the Einstein radius, we estimate the physical parameters of the planetary system. According to the best-fit model, the two planet masses are ∼0.11 M J and 0.68 MJ and they are orbiting a G-type main-sequence star with a mass ∼0.82 M⊙. The projected separations of the individual planets are beyond the snow line in all four solutions, being ∼3.8 AU and 4.6 AU in the best-fit solution. The deprojected separations are both individually larger and possibly reversed in order. This is the second multi-planet system with both planets beyond the snow line discovered by microlensing. This is the only such system (other than the solar system) with measured planet masses without sin i degeneracy. The planetary system is located at a distance 4.1 kpc from the Earth toward the Galactic center. It is very likely that extra light from stars other than the lensed star comes from the lens itself. If this is correct, it will be possible to obtain detailed information about the planet host star from follow-up observation. © 2013. The American Astronomical Society. All rights reserved. Source

Yee J.C.,Ohio State University | Yee J.C.,Harvard - Smithsonian Center for Astrophysics | Han C.,Chungbuk National University | Gould A.,Ohio State University | And 77 more authors.
Astrophysical Journal

We report the discovery of MOA-2013-BLG-220Lb, which has a super-Jupiter mass ratio q = 3.01 ± 0.02 × 10-3 relative to its host. The proper motion, μ = 12.5 ± 1 mas yr-1, is one of the highest for microlensing planets yet discovered, implying that it will be possible to separately resolve the host within ∼7 yr. Two separate lines of evidence imply that the planet and host are in the Galactic disk. The planet could have been detected and characterized purely with follow-up data, which has important implications for microlensing surveys, both current and into the Large Synoptic Survey Telescope (LSST) era. © 2014. The American Astronomical Society. All rights reserved.. Source

Poleski R.,Ohio State University | Poleski R.,University of Warsaw | Zhu W.,Ohio State University | Christie G.W.,Auckland Observatory | And 94 more authors.
Astrophysical Journal

The microlensing event OGLE-2015-BLG-0448 was observed by Spitzer and lay within the tidal radius of the globular cluster NGC 6558. The event had moderate magnification and was intensively observed, hence it had the potential to probe the distribution of planets in globular clusters. We measure the proper motion of NGC 6558 ((μcl (N, E) = +0.36 ± 0.10, +1.42 ± 0.10 mas yr-1) as well as the source and show that the lens is not a cluster member. Even though this particular event does not probe the distribution of planets in globular clusters, other potential cluster lens events can be verified using our methodology. Additionally, we find that microlens parallax measured using Optical Gravitational Lens Experiment (OGLE) photometry is consistent with the value found based on the light curve displacement between the Earth and Spitzer. © 2016. The American Astronomical Society. All rights reserved. Source

Zhu W.,Ohio State University | Calchi Novati S.,California Institute of Technology | Calchi Novati S.,University of Salerno | Gould A.,Ohio State University | And 92 more authors.
Astrophysical Journal

We report on the mass and distance measurements of two single-lens events from the 2015 Spitzer microlensing campaign. With both finite-source effect and microlens parallax measurements, we find that the lens of OGLE-2015-BLG-1268 is very likely a brown dwarf (BD). Assuming that the source star lies behind the same amount of dust as the Bulge red clump, we find the lens is a 45 ±7 BD at 5.9 ±1.0 kpc. The lens of of the second event, OGLE-2015-BLG-0763, is a 0.50 ±0.04 star at 6.9 ±1.0 kpc. We show that the probability to definitively measure the mass of isolated microlenses is dramatically increased once simultaneous ground- and space-based observations are conducted. © 2016. The American Astronomical Society. All rights reserved. Source

Han C.,Chungbuk National University | Jung Y.K.,Chungbuk National University | Udalski A.,University of Warsaw | Sumi T.,Osaka University | And 70 more authors.
Astrophysical Journal

Observations of accretion disks around young brown dwarfs (BDs) have led to the speculation that they may form planetary systems similar to normal stars. While there have been several detections of planetary-mass objects around BDs (2MASS 1207-3932 and 2MASS 0441-2301), these companions have relatively large mass ratios and projected separations, suggesting that they formed in a manner analogous to stellar binaries. We present the discovery of a planetary-mass object orbiting a field BD via gravitational microlensing, OGLE-2012-BLG-0358Lb. The system is a low secondary/primary mass ratio (0.080 ± 0.001), relatively tightly separated (0.87 AU) binary composed of a planetary-mass object with 1.9 ± 0.2 Jupiter masses orbiting a BD with a mass 0.022 M. The relatively small mass ratio and separation suggest that the companion may have formed in a protoplanetary disk around the BD host in a manner analogous to planets. © 2013. The American Astronomical Society. All rights reserved.. Source

Discover hidden collaborations