Entity

Time filter

Source Type

Boston, MA, United States

Scerif M.,Queen Mary, University of London | Fuzesi T.,Hungarian Academy of Sciences | Thomas J.D.,Queen Mary, University of London | Kola B.,Queen Mary, University of London | And 5 more authors.
Journal of Endocrinology | Year: 2013

AMP-activated protein kinase (AMPK), a regulator of cellular and systemic energy homeostasis, can be influenced by several hormones. Tissue-specific alteration of AMPK activity by glucocorticoids may explain the increase in appetite, the accumulation of lipids in adipose tissues, and the detrimental cardiac effects of Cushing's syndrome. Endocannabinoids are known to mediate the effects of various hormones and to influence AMPK activity. Cannabinoids have central orexigenic and direct peripheral metabolic effects via the cannabinoid receptor type 1 (CB1). In our preliminary experiments, WT mice received implants of a corticosterone-containing pellet to establish a mouse model of Cushing's syndrome. Subsequently, WT and Cb1 (Cnr1)-knockout (CB1-KO) littermates were treated with corticosterone and AMPK activity in the hypothalamus, various adipose tissues, liver and cardiac tissue was measured. Corticosterone-treated CB1-KO mice showed a lack of weight gain and of increase in hypothalamic and hepatic AMPK activity. In adipose tissues, baseline AMPK activity was higher in CB1-KO mice, but a glucocorticoid-induced drop was observed, similar to that observed in WT mice. Cardiac AMPK levels were reduced in CB1-KO mice, but while WT mice showed significantly reduced AMPK activity following glucocorticoid treatment, CB1-KO mice showed a paradoxical increase. Our findings indicate the importance of the CB1 receptor in the central orexigenic effect of glucocorticoid-induced activation of hypothalamic AMPK activity. In the periphery adipose tissues, changes may occur independently of the CB1 receptor, but the receptor appears to alter the responsiveness of the liver and myocardial tissues to glucocorticoids. In conclusion, our data suggest that an intact cannabinoid pathway is required for the full metabolic effects of chronic glucocorticoid excess. © 2013 Society for Endocrinology.


Wong C.-M.,Georgetown University | Preston I.R.,Tupper Research Institute | Hill N.S.,Tupper Research Institute | Suzuki Y.J.,Georgetown University
Free Radical Biology and Medicine | Year: 2012

Reactive oxygen species (ROS) have been implicated in the pathogenesis of pulmonary hypertension. Because iron is an important regulator of ROS biology, this study examined the effects of iron chelation on the development of pulmonary vascular remodeling. The administration of an iron chelator, deferoxamine, to rats prevented chronic hypoxia-induced pulmonary hypertension and pulmonary vascular remodeling. Various iron chelators inhibited the growth of cultured pulmonary artery smooth muscle cells. Protein carbonylation, an important iron-dependent biological event, was promoted in association with pulmonary vascular remodeling and cell growth. A proteomic approach identified that Rho GDP-dissociation inhibitor (a negative regulator of RhoA) is carbonylated. In human plasma, the protein carbonyl content was significantly higher in patients with idiopathic pulmonary arterial hypertension than in healthy controls. These results suggest that iron plays an important role in the ROS-dependent mechanism underlying the development of pulmonary hypertension. © 2012 Elsevier Inc. All rights reserved.


Liu Y.,Rutgers University | Wei L.,Tupper Research Institute | Laskin D.L.,Rutgers University | Fanburg B.L.,Tupper Research Institute
American Journal of Respiratory Cell and Molecular Biology | Year: 2011

Pulmonary hypertension is characterized by elevated pulmonary artery pressure and pulmonary artery smooth muscle cell (SMC) proliferation and migration. Clinical and experimental evidence suggests that serotonin (5-HT) is important in these responses. We previously demonstrated the participation of the 5-HT transporter and intracellular 5-HT (5-HTi) in the pulmonary vascular SMC-proliferative response to 5-HT. However, the mechanism underlying the intracellular actions of 5-HT is unknown. We speculated that 5-HTi activates SMC growth by post-translational transamidation of proteins via transglutaminase (TGase) activity, a process referred to as serotonylation. To test this hypothesis, serotonylation of pulmonary artery SMC proteins, and their role in 5-HT-induced proliferative and migratory responses, were assessed. 5-HT caused dose- and time-dependent increase in serotonylation of multiple proteins in both bovine and rat pulmonary artery SMCs. Inhibition of TGase with dansylcadaverin blocked this activity, as well as SMC-proliferative and migratory responses to 5-HT. Serotonylation of proteins also was blocked by 5-HT transporter inhibitors, and was enhanced by inhibition of monoamine oxidase, an enzyme known to degrade 5-HTi, indicating that 5-HTi levels regulate serotonylation. Immunoprecipitation assays and HPLC-mass spectral peptide sequencing revealed that a major protein serotonylated by TGase was fibronectin (FN). 5-HT-stimulated SMC serotonylation and proliferation were blocked by FN small interfering (si) RNA. These findings, together with previous observations that FN expression in the lung strongly correlates with the progression of pulmonary hypertension in both experimental animals and humans, suggest an important role of FN serotonylation in the pathogenesis of this disease. Copyright © 2011 American Thoracic Society.


Penumatsa K.C.,Tupper Research Institute | Fanburg B.L.,Tupper Research Institute
American Journal of Physiology - Lung Cellular and Molecular Physiology | Year: 2014

The monoamine serotonin (5-HT) has been previously implicated in pulmonary arterial remodeling and is considered a potential therapeutic target for the disease pulmonary arterial hypertension (PAH). More recently, it has been recognized that the enzyme tissue transglutaminase (TG2) mediates cross-linking of proteins with 5-HT, a posttranslational process of monoaminylation known as "serotonylation." TG2 activity and serotonylation of protein participate in both smooth muscle proliferation and contraction produced by 5-HT. Indeed, markedly increased TG2 activity has now been identified in lung tissue of an experimental rodent model of pulmonary hypertension, and elevated serotonylation of fibronectin and the signaling molecule Rho, downstream products of transglutamidation, have been found in blood of patients with PAH. The basic mechanism by which TG2 is activated and the potential role(s) of serotonylated proteins in pulmonary hypertension remain a mystery. In the present review we have tried to address the current understanding of 5-HT metabolism in pulmonary hypertension and relate it to what is currently known about the evolving cellular process of serotonylation. © 2014 the American Physiological Society.


Fekete C.,Hungarian Academy of Sciences | Fekete C.,Tupper Research Institute | Lechan R.M.,Tupper Research Institute | Lechan R.M.,Tufts University
Endocrine Reviews | Year: 2014

TRH is a tripeptide amide that functions as a neurotransmitter but also serves as a neurohormone that has a critical role in the central regulation of the hypothalamic-pituitary-thyroid axis. Hypophysiotropic TRH neurons involved in this neuroendocrine process are located in the hypothalamic paraventricular nucleus and secrete TRH into the pericapillary space of the external zone of the median eminence for conveyance to anterior pituitary thyrotrophs. Under basal conditions, the activity of hypophysiotropic TRH neurons is regulated by the negative feedback effects of thyroid hormone to ensure stable, circulating, thyroid hormone concentrations, a mechanism that involves complex interactions between hypophysiotropic TRH neurons and the vascular system, cerebrospinal fluid, and specializedglial cells called tanycytes.HypophysiotropicTRHneuronsalso integrateotherhumoralandneuronalinputsthat can alter the setpoint for negative feedback regulation by thyroid hormone. This mechanism facilitates adaptation of the organism to changing environmental conditions, including the shortage of food and a cold environment. The thyroid axis is also affected by other adverse conditions such as infection, but the central mechanisms mediating suppression of hypophysiotropicTRHmaybepathophysiological. In this review,wediscuss currentknowledgeabout the mechanisms that contribute to the regulation of hypophysiotropic TRH neurons under physiological and pathophysiological conditions. © 2014 by the Endocrine Society.

Discover hidden collaborations