Tupper Research Institute

Boston, MA, United States

Tupper Research Institute

Boston, MA, United States
Time filter
Source Type

Turi G.F.,Columbia University | Wittmann G.,Tupper Research Institute | Lechan R.M.,Tupper Research Institute | Losonczy A.,Columbia University
Neuropharmacology | Year: 2015

The septo-hippocampal GABAergic pathway connects inhibitory neurons in the medial septum with hippocampal interneurons. Phasic release of GABA from septo-hippocampal terminals is thought to play an important role in shaping hippocampal network activity during behavior. Here, we found that GABA release from septo-hippocampal terminals is under negative feedback from the hippocampal local inhibitory network. We found that the strength of septo-hippocampal GABAergic inhibition is constrained by presynaptic GABAb receptors that are activated by ambient GABA during states of increased hippocampal network activity. This article is part of the Special Issue entitled 'GABAergic Signaling in Health and Disease'. © 2014 Elsevier Ltd. All rights reserved.

Wittmann G.,Tupper Research Institute | Mohacsik P.,Hungarian Academy of Sciences | Mohacsik P.,Semmelweis University | Balkhi M.Y.,Tupper Research Institute | And 3 more authors.
Fluids and Barriers of the CNS | Year: 2015

Background: We recently reported that bacterial lipopolysaccharide (LPS)-induced inflammation decreases the expression of the primary thyroid hormone transporters at the blood-brain barrier, organic anion-transporting polypeptide 1c1 (OATP1c1) and monocarboxylate transporter 8 (MCT8). l-type amino acid transporters 1 and 2 (LAT1 & LAT2) are regarded as secondary thyroid hormone transporters, and are expressed in cells of the blood-brain or blood-cerebrospinal fluid barrier and by neurons. The purpose of this study was to examine the effect of LPS-induced inflammation on the expression of LAT1 and LAT2, as these may compensate for the downregulation of OATP1c1 and MCT8. Methods: LPS (2.5mg/kg body weight) was injected intraperitoneally to adult, male, Sprague-Dawley rats and C57Bl/6 mice, which were euthanized 2, 4, 9, 24 or 48h later. LAT1 and LAT2 mRNA expression were studied on forebrain sections using semiquantitative radioactive in situ hybridization. LAT1 protein levels in brain vessels were studied using LAT1 immunofluorescence. Statistical comparisons were made by the non-parametric Kruskal-Wallis and Dunn's tests. Results: In both species, LAT1 mRNA decreased in brain blood vessels as soon as 2h after LPS injection and was virtually undetectable at 4h and 9h. During recovery from endotoxemia, 48h after LPS injection, LAT1 mRNA in brain vessels increased above control levels. A modest but significant decrease in LAT1 protein levels was detected in the brain vessels of mice at 24h following LPS injection. LPS did not affect LAT1 and LAT2 mRNA expression in neurons and choroid plexus epithelial cells. Conclusions: The results demonstrate that LPS-induced inflammation rapidly decreases LAT1 mRNA expression at the blood-brain barrier in a very similar manner to primary thyroid hormone transporters, while changes in LAT1 protein level follow a slower kinetics. The data raise the possibility that inflammation may similarly down-regulate other blood-brain barrier transport systems at the transcriptional level. Future studies are required to examine this possibility and the potential pathophysiological consequences of inflammation-induced changes in blood-brain barrier transport functions. © 2015 Wittmann et al.

Wittmann G.,Tupper Research Institute | Hrabovszky E.,Hungarian Academy of Sciences | Lechan R.M.,Tupper Research Institute | Lechan R.M.,Tufts University
Journal of Comparative Neurology | Year: 2013

Pro-opiomelanocortin (POMC) and agouti-related protein (AGRP) neurons in the hypothalamus regulate various aspects of energy homeostasis and metabolism. POMC and AGRP neurons, respectively, agonize and antagonize melanocortin receptors on their common downstream neurons. However, it is unknown whether they also reciprocally stimulate and inhibit the same neurons by amino acid transmitters. Whereas AGRP neurons are mostly GABAergic, surprisingly, only a small population of POMC neurons has been found to be glutamatergic, and a significantly larger subpopulation to be GABAergic. To further examine amino acid phenotypes of POMC neurons, we studied mRNA expression for the glutamatergic marker, type 2 vesicular glutamate transporter (VGLUT2), and the GABA synthetic enzyme, glutamic acid decarboxylase 67 (GAD67), in POMC neurons of both rats and mice by using in situ hybridization techniques. In rats, approximately 58% of POMC neurons were labeled for VGLUT2 and 37% for GAD67 mRNA. In mice, approximately 43% of POMC neurons contained VGLUT2, and 54% contained GAD67 mRNA. In both species, a prominent mediolateral distribution pattern was observed at rostral and mid levels of the POMC cell group with VGLUT2-POMC neurons dominating in lateral portions and GAD67-POMC neurons in medial portions. These data demonstrate that both glutamatergic and GABAergic cells are present in comparably significant numbers among POMC neurons. Their glutamatergic or GABAergic phenotype may represent a major functional division within the POMC cell group. © 2013 Wiley Periodicals, Inc.

Wei L.,Tupper Research Institute | Liu Y.,Tupper Research Institute | Kaneto H.,Osaka University | Fanburg B.L.,Tupper Research Institute
American Journal of Physiology - Lung Cellular and Molecular Physiology | Year: 2010

JNK is a member of the MAPK family and has essential roles in inflammation and cell differentiation and apoptosis. In recent years, there have been accumulating data indicating a novel role for JNK in cell growth and migration. In this report, we demonstrate that JNK activity is necessary for serotonin (5-HT)-induced proliferation and migration of bovine pulmonary artery smooth muscle cells (PASMCs). Stimulation with 5-HT was found to lead to activation of JNK with a maximal activation at 10 min. Inhibition of JNK with its specific inhibitor, SP-600125, or its dominant-negative form, DN-JNK, significantly reduced 5-HT-stimulated 3 H]thymidine incorporation and cyclin D1 expression. A similar inhibitory effect on SMC migration produced by 5-HT, as detected by a wound healing assay, was observed with inhibition of JNK. Furthermore, inhibition of 5-HT receptors 1B and 2A, but not inhibition of the 5-HT transporter, blocked 5-HT-induced JNK activation. Inhibition of phosphatidylinositol 3-kinase (PI3K) with LY-294002 and wortmannin had little or no effect on 5-HT-induced JNK phosphorylation, but JNK inhibitor SP-600125 and DN-JNK blocked 5-HT-stimulated phosphorylation of Akt and its downstream effectors, p70S6K1 and S6, indicating that Akt is a downstream effector of JNK. Activation of Akt by 5-HT was blocked only minimally, if at all, by inhibitors of ERK and p38 MAPK, indicating a uniqueness of JNK MAPK in this activation of Akt. Coimmunoprecipitation showed binding of Akt to JNK, further supporting the interaction of JNK and Akt. Thus JNK is a critical molecule in 5-HT-induced PASMC proliferation and migration and may act at an important point for cross talk of the MAPK and PI3K pathways. Its activation by 5-HT is initiated through 5-HT 1B and 2A receptors, and its stimulation of SMC proliferation and migration occurs through the Akt pathway. Copyright © 2010 the American Physiological Society.

Bear M.D.,Tupper Research Institute | Li M.,Tupper Research Institute | Liu Y.,Tupper Research Institute | Giel-Moloney M.A.,Tufts University | And 2 more authors.
Journal of Biological Chemistry | Year: 2010

Serotonin (5-hydroxytryptamine, 5-HT) is mitogenic for several cell types including pulmonary arterial smooth muscle cells (PASMC), and is associated with the abnormal vascular smooth muscle remodeling that occurs in pulmonary arterial hypertension. RhoA/Rho kinase (ROCK) function is required for 5-HT-induced PASMC mitogenesis, and 5-HT activates RhoA; however, the signaling steps are poorly defined. Rho guanine nucleotide exchange factors (Rho GEFs) transduce extracellular signals to Rho, and we found that 5-HT treatment of PASMC led to increased membrane-associated Lbc Rho GEF, suggesting modulation by 5-HT. Lbc knockdown by siRNA attenuated 5-HT-induced thymidine uptake in PASMC, indicating a role in PASMC mitogenesis. 5-HT triggered Rho-dependent serum response factor-mediated reporter activation in PASMC, and this was reduced by Lbc depletion. Lbc knockdown reduced 5-HT-induced RhoA/ROCK activation, but not p42/44 ERK MAP kinase activation, suggesting that Lbc is an intermediary between 5-HT and RhoA/ROCK, but not ERK. 5-HT stimulation of PASMC led to increased association between Lbc, RhoA, and the α-catulin scaffold. Furthermore, α-catulin knockdown attenuated 5-HT-induced PASMC thymidine uptake. 5-HT-induced PASMC mitogenesis was reduced by dominant-negative Gq protein, suggesting cooperation with Lbc/α-catulin. These results for the first time define a Rho GEF involved in vascular smooth muscle cell growth and serotonin signaling, and suggest that Lbc Rho GEF family members play distinct roles. Thus, the Lbc/α-catulin axis participates in 5-HT-induced PASMC mitogenesis and RhoA/ROCK signaling, and may be an interventional target in diseases involving vascular smooth muscle remodeling. © 2010 by The American Society for Biochemistry and Molecular Biology, Inc.

Wong C.-M.,Georgetown University | Preston I.R.,Tupper Research Institute | Hill N.S.,Tupper Research Institute | Suzuki Y.J.,Georgetown University
Free Radical Biology and Medicine | Year: 2012

Reactive oxygen species (ROS) have been implicated in the pathogenesis of pulmonary hypertension. Because iron is an important regulator of ROS biology, this study examined the effects of iron chelation on the development of pulmonary vascular remodeling. The administration of an iron chelator, deferoxamine, to rats prevented chronic hypoxia-induced pulmonary hypertension and pulmonary vascular remodeling. Various iron chelators inhibited the growth of cultured pulmonary artery smooth muscle cells. Protein carbonylation, an important iron-dependent biological event, was promoted in association with pulmonary vascular remodeling and cell growth. A proteomic approach identified that Rho GDP-dissociation inhibitor (a negative regulator of RhoA) is carbonylated. In human plasma, the protein carbonyl content was significantly higher in patients with idiopathic pulmonary arterial hypertension than in healthy controls. These results suggest that iron plays an important role in the ROS-dependent mechanism underlying the development of pulmonary hypertension. © 2012 Elsevier Inc. All rights reserved.

Malhowski A.J.,Tupper Research Institute | Hira H.,Tupper Research Institute | Bashiruddin S.,Tupper Research Institute | Warburton R.,Tupper Research Institute | And 4 more authors.
Human Molecular Genetics | Year: 2011

Constitutive activation of mammalian target of rapamycin complex 1 (mTORC1), a key kinase complex that regulates cell size and growth, is observed with inactivating mutations of either of the tuberous sclerosis complex (TSC) genes, Tsc1 and Tsc2. Tsc1 and Tsc2 are highly expressed in cardiovascular tissue but their functional role there is unknown. We generated a tissue-specific knock-out of Tsc1, using a conditional allele of Tsc1 and a cre recombinase allele regulated by the smooth muscle protein-22 (SM22) promoter (Tsc1c/cSM22cre+/-) to constitutively activate mTOR in cardiovascular tissue. Significant gene recombination (~80%) occurred in the heart by embryonic day (E) 15, and reduction in Tsc1 expression with increased levels of phosphorylated S6 kinase (S6K) and S6 was observed, consistent with constitutive activation of mTORC1. Cardiac hypertrophy was evident by E15 with post-natal progression to heart weights of 142±24 mg in Tsc1c/cSM22cre+/- mice versus 65±14 mg in controls (P < 0.01). Median survival of Tsc1c/cSM22cre+/- mice was 24 days, with none surviving beyond 6 weeks. Pathologic and echocardiographic analysis revealed severe biventricular hypertrophy without evidence of fibrosis or myocyte disarray, and significant reduction in the left ventricular end-diastolic diameter (P < 0.001) and fractional index (P < 0.001). Inhibition of mTORC1 by rapamycin resulted in prolonged survival of Tsc1c/cSM22cre+/- mice, with regression of ventricular hypertrophy. These data support a critical role for the Tsc1/Tsc2-mTORC1-S6K axis in the normal development of cardiovascular tissue and also suggest possible therapeutic potential of rapamycin in cardiac disorders where pathologic mTORC1 activation occurs. © The Author 2011. Published by Oxford University Press. All rights reserved.

Liu Y.,Rutgers University | Wei L.,Tupper Research Institute | Laskin D.L.,Rutgers University | Fanburg B.L.,Tupper Research Institute
American Journal of Respiratory Cell and Molecular Biology | Year: 2011

Pulmonary hypertension is characterized by elevated pulmonary artery pressure and pulmonary artery smooth muscle cell (SMC) proliferation and migration. Clinical and experimental evidence suggests that serotonin (5-HT) is important in these responses. We previously demonstrated the participation of the 5-HT transporter and intracellular 5-HT (5-HTi) in the pulmonary vascular SMC-proliferative response to 5-HT. However, the mechanism underlying the intracellular actions of 5-HT is unknown. We speculated that 5-HTi activates SMC growth by post-translational transamidation of proteins via transglutaminase (TGase) activity, a process referred to as serotonylation. To test this hypothesis, serotonylation of pulmonary artery SMC proteins, and their role in 5-HT-induced proliferative and migratory responses, were assessed. 5-HT caused dose- and time-dependent increase in serotonylation of multiple proteins in both bovine and rat pulmonary artery SMCs. Inhibition of TGase with dansylcadaverin blocked this activity, as well as SMC-proliferative and migratory responses to 5-HT. Serotonylation of proteins also was blocked by 5-HT transporter inhibitors, and was enhanced by inhibition of monoamine oxidase, an enzyme known to degrade 5-HTi, indicating that 5-HTi levels regulate serotonylation. Immunoprecipitation assays and HPLC-mass spectral peptide sequencing revealed that a major protein serotonylated by TGase was fibronectin (FN). 5-HT-stimulated SMC serotonylation and proliferation were blocked by FN small interfering (si) RNA. These findings, together with previous observations that FN expression in the lung strongly correlates with the progression of pulmonary hypertension in both experimental animals and humans, suggest an important role of FN serotonylation in the pathogenesis of this disease. Copyright © 2011 American Thoracic Society.

Fekete C.,Hungarian Academy of Sciences | Fekete C.,Tupper Research Institute | Lechan R.M.,Tupper Research Institute | Lechan R.M.,Tufts University
Endocrine Reviews | Year: 2014

TRH is a tripeptide amide that functions as a neurotransmitter but also serves as a neurohormone that has a critical role in the central regulation of the hypothalamic-pituitary-thyroid axis. Hypophysiotropic TRH neurons involved in this neuroendocrine process are located in the hypothalamic paraventricular nucleus and secrete TRH into the pericapillary space of the external zone of the median eminence for conveyance to anterior pituitary thyrotrophs. Under basal conditions, the activity of hypophysiotropic TRH neurons is regulated by the negative feedback effects of thyroid hormone to ensure stable, circulating, thyroid hormone concentrations, a mechanism that involves complex interactions between hypophysiotropic TRH neurons and the vascular system, cerebrospinal fluid, and specializedglial cells called tanycytes.HypophysiotropicTRHneuronsalso integrateotherhumoralandneuronalinputsthat can alter the setpoint for negative feedback regulation by thyroid hormone. This mechanism facilitates adaptation of the organism to changing environmental conditions, including the shortage of food and a cold environment. The thyroid axis is also affected by other adverse conditions such as infection, but the central mechanisms mediating suppression of hypophysiotropicTRHmaybepathophysiological. In this review,wediscuss currentknowledgeabout the mechanisms that contribute to the regulation of hypophysiotropic TRH neurons under physiological and pathophysiological conditions. © 2014 by the Endocrine Society.

Penumatsa K.C.,Tupper Research Institute | Fanburg B.L.,Tupper Research Institute
American Journal of Physiology - Lung Cellular and Molecular Physiology | Year: 2014

The monoamine serotonin (5-HT) has been previously implicated in pulmonary arterial remodeling and is considered a potential therapeutic target for the disease pulmonary arterial hypertension (PAH). More recently, it has been recognized that the enzyme tissue transglutaminase (TG2) mediates cross-linking of proteins with 5-HT, a posttranslational process of monoaminylation known as "serotonylation." TG2 activity and serotonylation of protein participate in both smooth muscle proliferation and contraction produced by 5-HT. Indeed, markedly increased TG2 activity has now been identified in lung tissue of an experimental rodent model of pulmonary hypertension, and elevated serotonylation of fibronectin and the signaling molecule Rho, downstream products of transglutamidation, have been found in blood of patients with PAH. The basic mechanism by which TG2 is activated and the potential role(s) of serotonylated proteins in pulmonary hypertension remain a mystery. In the present review we have tried to address the current understanding of 5-HT metabolism in pulmonary hypertension and relate it to what is currently known about the evolving cellular process of serotonylation. © 2014 the American Physiological Society.

Loading Tupper Research Institute collaborators
Loading Tupper Research Institute collaborators