Entity

Time filter

Source Type

Australia

Roberts A.W.,TUNRA Bulk Solids | Krull T.,TUNRA Bulk Solids | Williams K.C.,TUNRA Bulk Solids | Williams K.C.,University of Newcastle
Bulk Solids Handling | Year: 2014

The safe ocean transport of bulk cargoes on large bulk ships is vitally dependent on the stability of the cargo under the influence of the rolling pitching and yawing motion of the ship and the transmission of vibration from the ship's engine and propulsion machinery as well as wave motion induced whipping. Safety standards for ship transport are set by such bodies as the International Maritime Organisation with recommended tests for the assessment of bulk ores deemed suitable for safe ship transport. These test procedures are somewhat empirical and take no account of the well established and proven flow property tests, analysis and design methodologies widely accepted in field of bulk solids handling. These matters are discussed in this article. The stress states in loaded bulk cargoes are examined with respect to the establishment of maximum limits for surface rill angles as a function of a ship's roll angles. Source


Chen X.L.,University of Newcastle | Wheeler C.A.,TUNRA Bulk Solids | Donohue T.J.,TUNRA Bulk Solids | Roberts A.W.,TUNRA Bulk Solids | Jones M.G.,TUNRA Bulk Solids
Bulk Solids Handling | Year: 2012

This paper presents work undertaken to model dust emissions from belt conveyor transfer chutes. Several transfer chute configurations were investigated during the course of the project with the aim of analysing the performance of each usingscale model laboratory testing. The experimental work involved measuring the quantity of fugitive dust, in addition to the velocity of the entrained air at the exit of the chutes using Particle Image Velocimetry (PIV). Computational Fluid Dynamics (CFD) was then used to theoretically analyse the flow patterns of the granular material and entrained air in each of the transfer chute configurations. The predicted air velocities and flow patterns obtained from the simulations compared favourably with the experimental results, demonstrating that CFD can be used as an effective tool to model and evaluate the performance of transfer chute designs with regards to dust emission. Source

Discover hidden collaborations