Time filter

Source Type

Madrid, Spain

Herrera-Merchan A.,Stem Cell Aging Group | Cerrato C.,Stem Cell Aging Group | Luengo G.,Genomic Unit | Dominguez O.,Genomic Unit | And 3 more authors.
Cell Cycle | Year: 2010

Hematopoietic stem cells (HSCs) are defined by their exclusive capacity to both self-renew and to give rise to multipotent progenitors (MPPs) that in turn differentiate into the mature blood cell lineages. The tumor suppressor p53, in addition to its role in the regulation of the cell cycle, plays an important role in HSC self-renewal, although it has not fully resolved. Here we report that in super-p53 mice (sp53), which carry one extra gene dose of p53, the miR-33 is downregulated in HSCs and highly expressed in MPPs. Transplantation assays of miR-33-transduced sp53 HSC results in a significant acquisition of repopulating capacity and a decrease of recipients survival. Moreover, high levels of miR-33 represses the endogenous level of p53 protein in murine embryonic fibroblasts (MEFs), leads both to neoplastic transformation and anchorage independent growth of MEFs, and displays a decrease of apoptotic response using tumor-derived cell lines. Accordingly, we demonstrate that miR-33-mediated downregulation of p53 is dependent on the binding of miR-33 to two conserved motifs in the 3′UTR of p53. together, these data show that the miR-33 modifies HSC repopulating efficiency of sp53 mice by impairing the p53 function. Defining the role of miR-33 in controlling the HSC self-renewal through p53 may lead to the prevention and treatment of hematopoietic disorders. © 2010 Landes Bioscience.

Lynch C.J.,University of York | Lynch C.J.,Tumour Suppression Group | Shah Z.H.,University of York | Allison S.J.,University of York | And 6 more authors.
PLoS ONE | Year: 2010

Background: The NAD-dependent deacetylase SIRT1 is a nutrient-sensitive coordinator of stress-tolerance, multiple homeostatic processes and healthspan, while p53 is a stress-responsive transcription factor and our paramount tumour suppressor. Thus, SIRT1-mediated inhibition of p53 has been identified as a key node in the common biology of cancer, metabolism, development and ageing. However, precisely how SIRT1 integrates such diverse processes remains to be elucidated. Methodology/Principal Findings: Here we report that SIRT1 is alternatively spliced in mammals, generating a novel SIRT1 isoform: SIRT1-ΔExon8. We show that SIRT1-ΔExon8 is expressed widely throughout normal human and mouse tissues, suggesting evolutionary conservation and critical function. Further studies demonstrate that the SIRT1-ΔExon8 isoform retains minimal deacetylase activity and exhibits distinct stress sensitivity, RNA/protein stability, and protein-protein interactions compared to classical SIRT1-Full-Length (SIRT1-FL). We also identify an auto-regulatory loop whereby SIRT1- DExon8 can regulate p53, while in reciprocal p53 can influence SIRT1 splice variation. Conclusions/Significance: We characterize the first alternative isoform of SIRT1 and demonstrate its evolutionary conservation in mammalian tissues. The results also reveal a new level of inter-dependency between p53 and SIRT1, two master regulators of multiple phenomena. Thus, previously-attributed SIRT1 functions may in fact be distributed between SIRT1 isoforms, with important implications for SIRT1 functional studies and the current search for SIRT1-activating therapeutics to combat age-related decline. © 2010 Lynch et al.

Collado M.,Tumour Suppression Group | Serrano M.,Tumour Suppression Group
Nature Reviews Cancer | Year: 2010

The importance of cellular senescence, which is a stress response that stably blocks proliferation, is increasingly being recognized. Senescence is prevalent in pre-malignant tumours, and progression to malignancy requires evading senescence. Malignant tumours, however, may still undergo senescence owing to interventions that restore tumour suppressor function or inactivate oncogenes. Senescent tumour cells can be cleared by immune cells, which may result in efficient tumour regression. Standard chemotherapy also has the potential to induce senescence, which may partly underlie its therapeutic activity. Although these concepts are well supported in mouse models, translating them to clinical oncology remains a challenge.

Herranz D.,Tumour Suppression Group | Serrano M.,Tumour Suppression Group
Nature Reviews Cancer | Year: 2010

The family of protein deacetylases represented by yeast Sir2 has been the focus of intense investigation because of the longevity activity of Sir2 in yeast, worms and flies. Research in mammals has mainly focused on SIRT1, the closest homologue of Sir2. Emerging evidence from mouse models is yielding a sharper picture, in which SIRT1 is a potent protector from ageing-associated pathologies, such as diabetes, liver steatosis, cardiovascular disease, neurodegeneration and, importantly, various types of cancer. © 2010 Macmillan Publishers Limited. All rights reserved.

Munoz-Espin D.,Tumour Suppression Group | Serrano M.,Tumour Suppression Group
Nature Reviews Molecular Cell Biology | Year: 2014

Recent discoveries are redefining our view of cellular senescence as a trigger of tissue remodelling that acts during normal embryonic development and upon tissue damage. To achieve this, senescent cells arrest their own proliferation, recruit phagocytic immune cells and promote tissue renewal. This sequence of events-senescence, followed by clearance and then regeneration-may not be efficiently completed in aged tissues or in pathological contexts, thereby resulting in the accumulation of senescent cells. Increasing evidence indicates that both pro-senescent therapies and antisenescent therapies can be beneficial. In cancer and during active tissue repair, pro-senescent therapies contribute to minimize the damage by limiting proliferation and fibrosis, respectively. Conversely, antisenescent therapies may help to eliminate accumulated senescent cells and to recover tissue function. © 2014 Macmillan Publishers Limited.

Discover hidden collaborations