Time filter

Source Type

Yang L.,Tumor Biotherapy Center | Zhang Y.,University of Sichuan | Cheng L.,University of Sichuan | Yue D.,University of Sichuan | And 5 more authors.
Human Gene Therapy | Year: 2016

The therapeutic effects of conventional treatments for advanced colorectal cancer with colorectal peritoneal carcinomatosis (CRPC) and malignant ascites are not very encouraging. Vascular endothelial growth factor-A/vascular permeability factors (VEGF-A/VPF) play key roles in the formation of malignant ascites. In previous work, we demonstrated that pigment epithelium-derived factor (PEDF) antagonized VEGF-A and could repress tumor growth and suppress metastasis in several cancer types. Thus, PEDF may be a therapeutic candidate for treating malignant ascites. Mesenchymal stem cells (MSCs) are promising tools for delivering therapeutic agents in cancer treatment. In the study, MSCs derived from bone marrow were efficiently engineered to secrete human PEDF by adenoviral transduction. Then, intraperitoneal Ad-PEDF-transduced MSCs were analyzed with respect to CRPC and malignant ascites in a CT26 CRPC model. MSCs engineered to secrete PEDF through adenoviral transduction significantly inhibited tumor metastasis and malignant ascites formation in CT26 CRPC mice. Antitumor mechanisms of MSCs-PEDF (MSCs transduced with Ad-PEDF: MOI 500) were associated with inhibiting tumor angiogenesis, inducing apoptosis, and restoring the VEGF-A/sFLT-1 ratio in ascites. Moreover, MSC-mediated Ad-PEDF delivery reduced production of adenovirus-neutralizing antibodies, prolonged PEDF expression, and induced MSCs-PEDF migration toward tumor cells. As a conclusion, MSCs engineered to secrete PEDF by adenoviral transduction may be a therapeutic approach for suppressing tumor metastasis and inhibiting malignant ascites production in CRPC. © 2016 by Mary Ann Liebert, Inc.

Loading Tumor Biotherapy Center collaborators
Loading Tumor Biotherapy Center collaborators