TUM CREATE One Create Way 138602 Singapore

Singapore

TUM CREATE One Create Way 138602 Singapore

Singapore
SEARCH FILTERS
Time filter
Source Type

Wei C.,Nanyang Technological University | Feng Z.,Oregon State University | Scherer G.G.,TUM CREATE One Create Way 138602 Singapore | Barber J.,Imperial College London | And 2 more authors.
Advanced Materials | Year: 2017

Exploring efficient and low-cost electrocatalysts for the oxygen-reduction reaction (ORR) and oxygen-evolution reaction (OER) is critical for developing renewable energy technologies such as fuel cells, metal-air batteries, and water electrolyzers. A rational design of a catalyst can be guided by identifying descriptors that determine its activity. Here, a descriptor study on the ORR/OER of spinel oxides is presented. With a series of MnCo2O4, the Mn in octahedral sites is identified as an active site. This finding is then applied to successfully explain the ORR/OER activities of other transition-metal spinels, including MnxCo3- xO4 (x = 2, 2.5, 3), LixMn2O4 (x = 0.7, 1), XCo2O4 (X = Co, Ni, Zn), and XFe2O4 (X = Mn, Co, Ni). A general principle is concluded that the eg occupancy of the active cation in the octahedral site is the activity descriptor for the ORR/OER of spinels, consolidating the role of electron orbital filling in metal oxide catalysis. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Loading TUM CREATE One Create Way 138602 Singapore collaborators
Loading TUM CREATE One Create Way 138602 Singapore collaborators