Chemnitz, Germany
Chemnitz, Germany

Chemnitz University of Technology is located in the town of Chemnitz in Germany. With over 10000 students it is the third largest university in Saxony and around 750 international students from 100 universities all over the world are enrolled each year. It was founded in 1836 as Royal Mercantile College and became a technical university in 1986. Wikipedia.


Time filter

Source Type

Grant
Agency: European Commission | Branch: FP7 | Program: CPCSA | Phase: ICT-2013.9.9 | Award Amount: 74.61M | Year: 2013

This Flagship aims to take graphene and related layered materials from a state of raw potential to a point where they can revolutionize multiple industries from flexible, wearable and transparent electronics, to new energy applications and novel functional composites.\nOur main scientific and technological objectives in the different tiers of the value chain are to develop material technologies for ICT and beyond, identify new device concepts enabled by graphene and other layered materials, and integrate them to systems that provide new functionalities and open new application areas.\nThese objectives are supported by operative targets to bring together a large core consortium of European academic and industrial partners and to create a highly effective technology transfer highway, allowing industry to rapidly absorb and exploit new discoveries.\nThe Flagship will be aligned with European and national priorities to guarantee its successful long term operation and maximal impact on the national industrial and research communities.\nTogether, the scientific and technological objectives and operative targets will allow us to reach our societal goals: the Flagship will contribute to sustainable development by introducing new energy efficient and environmentally friendly products based on carbon and other abundant, safe and recyclable natural resources, and boost economic growth in Europe by creating new jobs and investment opportunities.


Grant
Agency: European Commission | Branch: FP7 | Program: CP | Phase: ICT-2013.3.1 | Award Amount: 5.85M | Year: 2014

Modular interposer architecture providing scalable heat removal, power delivery and communicationCarrICool will deliver a game-changing 3D packaging platform for scale-up of future, many-core, Exascale computing systems. The project will also develop a strategic supplier base in Europe for high-end HPC components and systems integration capabilities in the Exascale era. In CarrICool, advanced More-than-Moore components required to scale to energy efficient ExaFLOP computing performance will be developed and integrated into a modular and multifunctional interposer. Four critical packaging elements are implemented on the CarrICool interposer: i) Improved structural and electrical performance will be provided by expansion matching and high wiring density. ii) low thermal gradients for Beyond-CMOS and silicon photonic devices will be provided by integrated, single-phase, water-cooling cavities. iii) High granularity, distributed Buck-converters using integrated, high-quality power inductors will support energy-efficient power delivery to heterogeneous chip stacks. iv) Off-chip bandwidth will be enabled through low-cost and low-loss passive optical coupling to silicon photonic wave guides. CarrICool is targeting 2-fold improvement in heat removal, 10-fold higher voltage granularity and a 10-fold cost reduction in photonic packaging.Advanced characterization and simulation techniques will be implemented using physics-of-failure-based lifetime modelling to provide design-rules for improved system architecture. The performance of the four packaging elements of the modular interposer will be validated on three separate demonstrators and then integrated on the main CarrICool demonstrator. The CarrICool consortium pools interdisciplinary excellence, uniting ten partners from global companies (2), European SMEs (3), institutes (3) and academia (2) across seven European countries. An Advisory Board ensures the alignment of the project goals with user needs.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: FOF-04-2016 | Award Amount: 4.32M | Year: 2016

Smart factories are characterized by increasing automation and increasing customization. In these dynamic environments flexible and adaptive work organization is crucial both for productivity and work satisfaction. Factory2Fit project will support this development by developing adaptation solutions with which people with different skills, capabilities and preferences can be engaged, motivated and productive members of the work community in manufacturing industries. The core idea in Factory2Fit project is that the worker is an expert of his/her own work and thus (s)he shall have an active role in designing his/her work. The proposed adaptive automation solutions are based on a dynamic user model that includes physical and cognitive abilities. The worker him/herself gets feedback of his performance and skills, which supports continuous learning and competence development. Virtual factory models will be used as engaging platforms for participatory design of work practices, knowledge sharing and training, involving all the relevant stakeholders in contributing the organizational development. Contextual guidance and knowledge sharing is supported by augmented reality based tools. The adaptation solutions will be developed within three industrial pilots in actual manufacturing environments. The solutions will be generalized and disseminated widely to the manufacturing industry. Adaptive automation solutions to be developed in Factory2Fit will support fluent human-automation cooperation and will have impacts in work satisfaction, less occupational health issues, less stress, better ergonomics, better quality, less errors and better productivity. Adaptive automation supports current and forthcoming workers to develop their competences towards knowledge workers of smart factories with fulfilling work careers. This will further improve the competitiveness of European manufacturing industry and support the principle of responsible manufacturing industry.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: MG-3.6a-2015 | Award Amount: 9.61M | Year: 2016

ADAS&ME (Adaptive ADAS to support incapacitated drivers &Mitigate Effectively risks through tailor made HMI under automation) will develop adapted Advanced Driver Assistance Systems, that incorporate driver/rider state, situational/environmental context, and adaptive interaction to automatically transfer control between vehicle and driver/rider and thus ensure safer and more efficient road usage. To achieve this, a holistic approach will be taken which considers automated driving along with information on driver/rider state. The work is based around 7 provisionally identified Use Cases for cars, trucks, buses and motorcycles, aiming to cover a large proportion of driving on European roads. Experimental research will be carried out on algorithms for driver state monitoring as well as on HMI and automation transitions. It will develop robust detection/prediction algorithms for driver/rider state monitoring towards different driver states, such as fatigue, sleepiness, stress, inattention and impairing emotions, employing existing and novel sensing technologies, taking into account traffic and weather conditions via V2X and personalizing them to individual drivers physiology and driving behaviour. In addition, the core development includes multimodal and adaptive warning and intervention strategies based on current driver state and severity of scenarios. The final outcome is the successful fusion of the developed elements into an integrated driver/rider state monitoring system, able to both be utilized in and be supported by vehicle automation of Levels 1 to 4. The system will be validated with a wide pool of drivers/riders under simulated and real road conditions and under different driver/rider states; with the use of 2 cars (1 conventional, 1 electric), 1 truck, 2 PTWs and 1 bus demonstrators. This challenging task has been undertaken by a multidisciplinary Consortium of 30 Partners, including an OEM per vehicle type and 7 Tier 1 suppliers.


Grant
Agency: European Commission | Branch: H2020 | Program: MSCA-ITN-ETN | Phase: MSCA-ITN-2016 | Award Amount: 3.83M | Year: 2016

Organic solar cells (OSCs) have the potential to become an environmental friendly, inexpensive, large area and flexible photovoltaics technology. Their main advantages are low process temperatures, the potential for very low cost due to abundant materials and scalable processing, and the possibility of producing flexible devices on plastic substrates. To improve their commercialization capacity, to compete with established power generation and to complement other renewable energy technologies, the performance of state-of-the-art OSCs needs to be further improved. Our goals within SEPOMO Spins in Efficient Photovoltaic devices based on Organic Molecules are to bring the performance of OSCs forward by taking advantage of the so far unexplored degree of freedom of photogenerated species in organic materials, their spin. This challenging idea provides a unified platform for the excellent research to promote the world-wide position of Europe in the field of organic photovoltaics and electronics, and to train strongly motivated early stage researchers (ESRs) for a career in science and technology oriented industry that is rapidly growing. Our scientific objectives are to develop several novel routes to enhance the efficiency of OSC by understanding and exploiting the electronic spin interactions. This will allow us to address crucial bottlenecks in state-of-the-art OSCs: we will increase the quantum efficiency by reducing the dominant recombination losses and by enhancing the light harvesting and exciton generation, e.g. by means of internal upconversion of excited states. Our ESRs will be trained within this interdisciplinary (physics, chemistry, engineering) and intersectoral (academia, R&D center, enterprise) consortium in highly relevant fundamental yet application-oriented research with the potential to commercialise the results. The hard and soft skills learned in our network are central for the ESRs to pursue their individual careers in academics or industry.


Grant
Agency: European Commission | Branch: FP7 | Program: CP-IP | Phase: SEC-2012.4.2-2 | Award Amount: 13.14M | Year: 2013

The dynamic capture of situational awareness concerning crowds in specific mass gathering venues and its intelligent enablement into emergency management information systems, using smart communication devices and spaces is critical for achieving rapid, timely guidance and safe evacuation of people out of dangerous areas. Humans could be overwhelmed by fast changes of potentially dangerous incidents occurring at confined environments with mass-gathering. They could fail to make objective decisions to find their way to safety. This condition may lead to mass panic and make emergency management more challenging. In eVACUATE, the intelligent fusion of sensors, geospatial and contextual information, with advanced multi-scale crowd behaviour detection and recognition will be developed. The structured fusion of sensing information with dynamic estimated uncertainties on behaviour predictions will advance eVACUATE crowd dynamic models; and virtual reality simulations of crowds in confined environments. A service oriented Decision-Support System shall be developed to dynamically distribute on-demand evacuation information to emergency management actors as the crisis unfolds. Decision-makers at the command posts, first responders, front-line stewards and volunteers receive real-time situation aware information of updated evacuation strategies using robust and resilient eVACUATE information and communication infrastructure. Smart spaces of electronic, audio and other mobile devices shall be connected to the integrated system to provide safer evacuation routings for people. The eVACUATE system performance and scalability will be validated in five distinct scenarios involving incidents with large crowd at various venues with the requirements of evacuation time reductions and increases of safety and security. These are: 1) Underground stations in Bilbao and 2) Marseille; 3) Real Sociedad Footbal Stadium in San Sebastian, 4) Athens International Airport and 5) a STX Cruiseship.


Grant
Agency: European Commission | Branch: H2020 | Program: SGA-RIA | Phase: FETFLAGSHIP | Award Amount: 89.00M | Year: 2016

This project is the second in the series of EC-financed parts of the Graphene Flagship. The Graphene Flagship is a 10 year research and innovation endeavour with a total project cost of 1,000,000,000 euros, funded jointly by the European Commission and member states and associated countries. The first part of the Flagship was a 30-month Collaborative Project, Coordination and Support Action (CP-CSA) under the 7th framework program (2013-2016), while this and the following parts are implemented as Core Projects under the Horizon 2020 framework. The mission of the Graphene Flagship is to take graphene and related layered materials from a state of raw potential to a point where they can revolutionise multiple industries. This will bring a new dimension to future technology a faster, thinner, stronger, flexible, and broadband revolution. Our program will put Europe firmly at the heart of the process, with a manifold return on the EU investment, both in terms of technological innovation and economic growth. To realise this vision, we have brought together a larger European consortium with about 150 partners in 23 countries. The partners represent academia, research institutes and industries, which work closely together in 15 technical work packages and five supporting work packages covering the entire value chain from materials to components and systems. As time progresses, the centre of gravity of the Flagship moves towards applications, which is reflected in the increasing importance of the higher - system - levels of the value chain. In this first core project the main focus is on components and initial system level tasks. The first core project is divided into 4 divisions, which in turn comprise 3 to 5 work packages on related topics. A fifth, external division acts as a link to the parts of the Flagship that are funded by the member states and associated countries, or by other funding sources. This creates a collaborative framework for the entire Flagship.


Grant
Agency: European Commission | Branch: H2020 | Program: MSCA-ITN-ETN | Phase: MSCA-ITN-2015-ETN | Award Amount: 3.45M | Year: 2015

The continuous trend towards miniaturization and multi-functionality embedded in products and processes calls for an ever increasing innovation, research and development within the European manufacturing sector. A necessary condition for the European productive sector to be at the global forefront of technology, ensuring job creation and sustainable growth, is to have access to innovative, entrepreneurial, highly skilled research engineers in the fields of micro manufacturing and micro product/process development. The MICROMAN ITN will provide world excellent research training to 13 ESR in the field of micro manufacturing proposing: (1) innovative technological solutions for high quality and high throughput micro production (micro manufacturing process fingerprint, zero-defect net-shape micro manufacturing) for the micro manufacturing industry; (2) cutting edge inter-disciplinary training in different domains (-polymer moulding, -metal forming, -extrusion, -tooling technologies, -product metrology, -manufacturing process metrology); (3) validation of different micro manufacturing processes by integration into process chains for the production of micro component for the bio-medical, health-care, machine tool, pharmaceutical, quality control sectors. The training strategy is based on the 50-30-20 principle, in which each single ESR will develop a core technical competence, a complementary technical competence, and a general technical competence in all domains addressed by the project with a research effort proportional to the 50%-30%-20% of the total effort. An all-round, comprehensive yet specialized, training in micro manufacturing will be ensured. Specific training on project engineering research management and entrepreneurship completes the training and provides the ESR the required skills to effectively contribute to the competitiveness of the European micro manufacturing industry, and in turn to job creation and well-being of the European society.


Grant
Agency: European Commission | Branch: H2020 | Program: IA | Phase: GALILEO-1-2015 | Award Amount: 2.92M | Year: 2016

The main objective of this project is to develop and demonstrate innovative close-to-market applications, which are heavily relying on accurate and high integrity satellite navigation. To achieve the full potential of advanced satellite positioning, an integrated solution starting from low-level signal processing to high-level data fusion will be proposed to get a continuous probabilistic positioning of high integrity. InDRIVE will demonstrate the future use of mass-market GNSS, targeting automotive applications with high demands for integrity by creating a framework that specifies the requirements for data acquisition, signal tracking and data fusion in order to guarantee the proper handling of positioning data. This approach introduces an innovative integrity framework, allowing the applications to comply with their specified false alarm rates. InDRIVE will target several applications in the area of Advanced Driver Assistance Systems (ADAS) and future Intelligent Transportation Systems (ITS) based on different positioning requirements. Both connected and non connected vehicles will be considered. The innovation of this project stands in the adoption the EGNSS localization for automated manoeuvres in automotive applications: EGNSS will be used not only for positioning but also to estimate the confidence of the position. In order to meet the requirements for each use case, a new technology will be introduced for the computation of confidence. As a result, the solution will guarantee the compliance of the use cases in terms of false alarm rates and accuracy. In practice three areas will be defined (red, yellow and green):within the red area, safety critical applications (as emergency breaking) will operate. The extension to the yellow area will meet the requirements for warning based applications with lower time to collision demands. The green area represents the informative applications, like traffic or weather information.

Loading TU Chemnitz collaborators
Loading TU Chemnitz collaborators