Freiberg, Germany

TU Bergakademie Freiberg

www.tu-freiberg.de/
Freiberg, Germany

The Technische Universität Bergakademie Freiberg is a small German University of Technology with about 6000 students in the city of Freiberg, Saxony. It was established in 1765, by Prince Franz Xaver, regent of Saxony, based on plans by Friedrich Wilhelm von Oppel and Friedrich Anton von Heynitz, and is the oldest university of mining and metallurgy in the world. The chemical elements Indium and Germanium were discovered by scientists of Freiberg University. The polymath Alexander von Humboldt studied mining at the Bergakademie Freiberg in 1791/1792. Nowadays TU Bergakademie Freiberg is a Technical university with 6 faculties are without tuition fees; students pay only a registration fee of about 70 € per semester. Wikipedia.


Time filter

Source Type

Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: SC5-11a-2014 | Award Amount: 6.57M | Year: 2015

The overall aim of Real-Time-Mining is to develop a real-time framework to decrease environmental impact and increase resource efficiency in the European raw material extraction industry. The key concept of the proposed research promotes the change in paradigm from discontinuous intermittent process monitoring to a continuous process and quality management system in highly selective mining operations. Real-Time Mining will develop a real-time process-feedback control loop linking online data acquired during extraction at the mining face rapidly with an sequentially up-datable resource model associated with real-time optimization of long-term planning, short-term sequencing and production control decisions. The project will include research and demonstration activities integrating automated sensor based material characterization, online machine performance measurements, underground navigation and positioning, underground mining system simulation and optimization of planning decisions, state-of-the art updating techniques for resource/reserve models. The impact of the project is expected on the environment through a reduction in CO2-emissions, increased energy efficiency and production of zero waste by maximizing process efficiency and resource utilization. Currently economically marginal deposits or difficult to access deposits will be become industrial viable. This will result in a sustainable increase in the competitiveness of the European raw material extraction through a reduced dependency on raw materials from non-EU sources.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: SC5-11b-2014 | Award Amount: 5.08M | Year: 2014

Modern economy is highly dependent on specific raw materials, and it is envisaged that this dependency will increase in the near future. Most of them are scarce in EU and of poor purity, being mixed within complex and low grade aggregates which need to be processed by means of a separation process consuming high quantities of energy and water, and even in some cases this makes its exploitation unfeasible due to production costs. Being EU dependent on some of these materials, as identified by EIP initiative, our society is demanding more efficient extracting processes to contribute to major European independency on these Critical Raw Materials. Tungsten and Tantalum ores are two recognized CRMs: In a market currently dominated by China and Russia production (among others), in Europe Tungsten (limited) production is mostly concentrate into UK, Spain and Portugal . On the other side, Tantalum is a key element on electronics with clear EU external production dependency, as it is naturally really scarce in Europe (only 1% of world production is concentrated in EU). Knowing this situation, OptimOre Project proposes the research and development of modelling and control technologies, using advanced sensing and advanced industrial control by means of artificial intelligence techniques, for the more efficient and flexible Tantalum and Tungsten ores processing from crushing to separation process, with the participation of relevant international players in the mining field on research (Chalmers University- Dr. Magnus Evertsson, Exeter University with Dr. Richard Pascoe, Freiburg University with Dr. Holberg Lieberwirth, among others). The project proposes a 3 years collaboration among 8 partners of 4 different countries.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: SC5-11a-2014 | Award Amount: 8.56M | Year: 2015

BioMOre describes a New Mining Concept for Extracting Metals from Deep Ore Deposits using Biotechnology. The concept is to use hydrofracturing for stimulation and bioleaching for winning of ores. The final process will consist of a so-called doublet, which is two deviated and parallel wells. In order to avoid high costs for drilling from the surface, the BioMOre approach is divided into two phases. Phase 1 will be research on the intended bioleaching process whereas phase 2 will aim at a pilot installation to demonstrate the applicability of the process in large scale including hydro-fracturing and access of the deposit from surface. The first phase should cover the intended work of the current BioMOre approach without drilling from surface. The BioMOre project aims at extracting metals from deep mineralized zones in Europe (Poland-Germany, Kupferschiefer deposit as a test case) by coupling solution mining and bioleaching. Selected sustainability indicators based on regulatory requirements of the European Commission will be applied for feasibility considerations. The main objective of the BioMOre first phase is to design and build an underground test facility for testing the concept of combined hydro-fracturing and bioleaching. The test facility will comprise a 100 m ore block, where boreholes will be drilled horizontally using standard equipment. All necessary equipment for testing different parameters of the intended bioleaching process will be established underground. The intention is to test the bioleaching process in high detail in an in-situ environment at the same time avoiding time consuming and risky permission procedures. On the other hand, the application for the permission of underground test operation must contain detailed information about monitoring of tests and all material controls. No harmful substances will remain in the mine after the tests are completed. Further to that, predictive numerical modelling of a pilot installation should be done.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: SC5-12b-2015 | Award Amount: 5.00M | Year: 2016

Flintstone2020 aims to provide a perspective for the replacement of two important CRMs tungsten (W) and cobalt (Co) which are the main constituents for two important classes of hard materials (cemented carbides/WC-Co, and PCD/diamond-Co), by developing innovative alternative solutions for tooling operating under extreme conditions. Fundamental knowledge on mechanical properties and wear of different tools, gained in machining tests and dedicated experiments from WP1 is passed onto the respective WPs. WP2 will experiment on small samples with 3-9 mm for testing the fundamental behavior of new B-X phases and particularly as a feedback for binder matrix improvement. In WP3 samples (12 mm ) will be investigated from individual HPHT runs for characterization and testing to guide high pressure sintering process optimization. The HPHT process and the samples produced are then upscaled to the industrial mass production level in WP4. In WP5, demonstrator cutting tools from full size HPHT synthesis test runs will be prepared via laser cutting and consecutive macro- and microshaping of tool geometry within WP5. In WP6 aspects of environmental benefits in the total life cycle of the superhard materials will be investigated, including health and safety aspects. WP7 will focus on exploitation and dissemination.


Grant
Agency: European Commission | Branch: FP7 | Program: CP-IP | Phase: NMP.2013.4.1-2 | Award Amount: 14.74M | Year: 2014

Earth provides natural resources, such as fossil fuels and minerals, that are vital for Europes economy. As the global demand grows, especially for strategic metals, commodity prices rapidly rise and there is an identifiable risk of an increasing supply shortage of some metals, including those identified as critical to Europes high technology sector. Hence a major element in any economys long-term strategy must be to respond to the increasing pressure on natural resources to ensure security of supply for these strategic metals. In todays rapidly changing global economic landscape, mining in the deep sea, specifically at hydrothermal vents and the vast areas covered by polymetallic nodules, has gone from a distant possibility to a likely reality within just a decade. The extremely hostile conditions found on the deep-ocean floor pose specific challenges, both technically and environmentally, which are demanding and entirely different from land-based mining. At present, European offshore industries and marine research institutions have some global advantage through their significant experience and technology and are well positioned to develop engineering and knowledge-based solutions to resource exploitation in these challenging and sensitive environments. However, against an international backdrop of state-sponsored research and development in sea floor resource discovery, assessment and extraction technologies, European operators are at an increasing disadvantage. Hence the recognised need to initiate pilot studies to develop breakthrough methodologies for the exploration, assessment and extraction of deep-sea minerals, as well as investigate the implications for economic and environmental sustainability. The Blue Mining project will address all aspects of the entire value chain in this field, from resource discovery (WP1) to resource assessment (WP2), from exploitation technologies (WP3) to the legal and regulatory framework (WP5).


Grant
Agency: European Commission | Branch: H2020 | Program: MSCA-ITN-ETN | Phase: MSCA-ITN-2014-ETN | Award Amount: 3.80M | Year: 2015

Porous coordination network materials, also known as Metal-organic Frameworks (MOFs), are at the cutting edge of molecular materials science. DEFNET, DEFect NETwork materials science and engineering, is the first European Training Network (ETN) at the intersection of chemistry, physics and engineering aimed at structural and functional complexity of MOFs. It provides a unique interdisciplinary training platform for early stage researchers and combines the expertise of the academic and the non-academic sector for fundamental development and industrial application and technology transfer aspects. The research and the training program in materials synthesis, characterization, computational modelling and application is accomplished in a coordinated effort involving 8 academic and 8 industrial partners from 6 European countries. DEFNET will particularly investigate defects, disorder and correlated phenomena in MOFs and related materials. The understanding and the intentional modification of defect structures of porous coordination networks is essential for advanced controlling their properties in catalysis, gas capture and separation beyond existing materials limitations. Benchmarking will be done against selected zeolite materials, which are very well established for large scale industrial applications. It is anticipated that superior functionalities of defect engineered MOFs will be identified which cannot be achieved by employing other porous materials.


Grant
Agency: European Commission | Branch: FP7 | Program: JTI-CP-FCH | Phase: SP1-JTI-FCH.2012.2.3 | Award Amount: 3.84M | Year: 2013

In the BioROBUR project a robust and efficient fuel processor for the direct reforming of biogas will be developed and tested at a scale equivalent to 50 Nm3/h production of PEM-grade hydrogen to demonstrate the achievement of all the call mandates. The system energy efficiency of biogas conversion into hydrogen will be 65%, for a reference biogas composition of 60%vol CH4 and 40%vol CO2. Key innovations of the BioROBUR approach are: - The choice of an autothermal reforming route, based on easily-recoverable noble-metal catalysts supported on high-heat-conductivity cellular materials, which shows intrinsic advantages compared to steam reforming: catalysts less prone to coking, easier adaptability to biogas changing composition, more compact design, efficient handling of heat, lower materials costs, fast start-up/shut-down, easier process control, etc. - The adoption of a multifunctional catalytic wall-flow trap based on transition metal catalysts, close coupled to the ATR reformer, which could entail effective filtration and conversion of soot particles eventually generated in the inlet part of the reformer during steady or transient operation, the decomposition of traces of incomplete reforming products (i.e. aldehydes, ethylene,), the promotion of the WGS reaction to a significant extent so as to lower the size of the WGS unit, etc. - The adoption of a coke growth control strategy based on periodic pulses of air/steam or on momentary depletion of the biogas feed so as to create adequate conditions in the ATR reactor for an on-stream regeneration of the catalysts, thereby prolonging the operating lifetime of the catalysts with no need of reactor shut-down. Under the experienced coordination of Prof. Debora Fino, the project will integrate, in an industrially oriented exploitation perspective, the contribution of 9 partners (3 universities, 2 research centres, 3 SMEs and 1 large company from 7 different European Countries) with complementary expertise.


Grant
Agency: European Commission | Branch: H2020 | Program: MSCA-ITN-ETN | Phase: MSCA-ITN-2016 | Award Amount: 3.86M | Year: 2016

Unlike China, Russia or South Africa, the EU-28 Member States are not in the fortunate position of having vast, easily accessible ore deposits containing valuable metals. However, Europe does have large quantities of secondary industrial residues (tailings, sludges, slags and ashes) that contain significant concentrations of both critical and economically important metals. The European Training Network for the Sustainable, zero-waste valorisation of critical-metal-containing industrial process residues (SOCRATES) targets ground-breaking metallurgical processes, incl. plasma-, bio-, solvo-, electro- and ionometallurgy, that can be integrated into environmentally friendly, zero-waste valorisation flow sheets. By unlocking the potential of these secondary raw materials, SOCRATES contributes to a more diversified and sustainable supply chain for critical metals (cf. Priority area 3 in EC Circular Economy Action Plan; COM(2015)614/2). The SOCRATES consortium brings together all the relevant stakeholders along the value chain, from metal extraction, to metal recovery, and to residual matrix valorisation in added-value applications, such as supplementary cementitious materials, inorganic polymers and catalysts. To maximise applicability, SOCRATES has selected four commonly available and chemically complementary residue families: (1) flotation tailings from primary Cu production, (2) Fe-rich sludges from Zn production, (3) fayalitic slags from non-ferrous metallurgy, and (4) bottom ashes from incineration plants. As a basis for a concerted effort to strengthen the EUs critical-metal supply chain for Ge, In, Ga and Sb, SOCRATES trains 15 early-stage researchers (ESRs) in technological innovation: metal extraction (WP1), metal recovery (WP2), residual matrix valorisation (WP3) and integrated assessment (WP4). By training the ESRs in scientific, technical and soft skills, they are the next generation of highly employable scientists and engineers in the raw-materials sector.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: LCE-02-2014 | Award Amount: 15.62M | Year: 2015

The aim of the Drilling in dEep, Super-CRitical AMBients of continentaL Europe: DESCRAMBLE project is to develop novel drilling technologies for a proof-of-concept test of reaching deep geothermal resources and to contribute to a low-carbon European society. To achieve this target the first drilling in the world in an intra-continental site at a middle-crustal level will be performed. The test site is an existing dry well in Larderello, Italy, already drilled to a depth of 2.2 km and temperature of 350 C, which will be further drilled to 3-3.5 km to reach super-critical conditions unexpectedly experienced, and not controlled, in a nearby well in 1979. The project will be organized into two main phases: (1) Drilling in super-critical conditions, including drilling components, well materials, design and control; (2) Geo-Scientific activities for predicting and controlling critical conditions, which considers petrological, physical and chemical characterization, simulation and monitoring, including high temperature and pressure tools. Main expected outcomes: Improved drilling concepts in deep crustal conditions New drilling materials, equipment and tools Physical and chemical characterization of deep crustal fluids and rocks The site is perfect for such an experiment, as it is representative of most deep crustal levels in Europe, cost effective since drilling to reach the target is reduced to a minimum, practical due to the high probability of encountering super-critical conditions. The productivity and efficiency of the project are guaranteed by the combination of industrial and research participation and by the recognised expertise of the consortium in geothermal R&D as well as oil and gas drilling, bringing together excellence in the respective sectors. DESCRAMBLE will explore the possibility of reaching extremely high specific productivity per well, up to ten times the standard productivity, with a closed loop, zero emission, and reduced land occupation.


Grant
Agency: European Commission | Branch: H2020 | Program: ERC-STG | Phase: ERC-StG-2015 | Award Amount: 1.50M | Year: 2016

After decades of truly transformative advancements in single molecule (bio)physics and surface science, it is still no more than a vision to predict and control macroscopic phenomena such as adhesion or electrochemical reaction rates at solid/liquid interfaces based on well-characterized single molecular interactions. How exactly do inherently dynamic and simultaneous interactions of a countless number of interacting crowded molecules lead to a concerted outcome/property on a macroscopic scale? Here, I propose a unique approach that will allow us to unravel the scaling of single molecule interactions towards macroscopic properties at adhesive and redox-active solid/liquid interfaces. Combining Atomic Force Microscopy (AFM) based single molecule force spectroscopy and macroscopic Surface Forces Apparatus (SFA) experiments CSI.interface will (1) derive rules for describing nonlinearities observed in complex, crowded (water and ions) and chemically diverse adhesive solid/liquid interfaces; (2) uniquely characterize all relevant kinetic parameters (interaction free energy and transition states) of electrochemical and adhesive reactions/interactions of single molecules at chemically defined surfaces as well as electrified single crystal facets and step edges. Complementary, (3) my team and I will build a novel molecular force apparatus in order to measure single-molecule steady-state dynamics of both redox cycles as well as binding unbinding cycles of specific interactions, and how these react to environmental triggers. CSI.interface goes well beyond present applications of AFM and SFA and has the long-term potential to revolutionize our understanding of interfacial interaction under steady state, responsive and dynamic conditions. This work will pave the road for knowledge based designing of next-generation technologies in gluing, coating, bio-adhesion, materials design and much beyond.

Loading TU Bergakademie Freiberg collaborators
Loading TU Bergakademie Freiberg collaborators