Entity

Time filter

Source Type


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: ICT-01-2014 | Award Amount: 3.89M | Year: 2015

Open and smart cyber-physical systems (CPS) are considered to be the next revolution in ICT with enormous economic potential enabling novel business models for integrated services and products. In many areas of CPS devices, there is a strong trend towards open systems, which can be extended during operation instantly adding functionalities on demand. The main goal of the TAPPS (Trusted Apps for open CPS) project is the development of a platform for CPS Apps, which can also access and modify device internals. Therefore, the solution will address all necessary layers from hardware over software to an app store concept always ensuring security and full real-time support for the applications. The extensibility and the pervasive trusted environment of TAPPS are important differentiators that will enable new market extensions to keep pace with user expectations and latest technology. As current, rich execution platforms for apps are limited in security, the project will develop a parallel, real-time Trusted Execution Environment (TEE) for highly-trusted CPS Apps. The TEE is located separately from existing the execution environment inside the System Control Units and exploits functionalities provided by the novel hardware-, processor- and network-centric security mechanisms as well as a hypervisor for virtualization. Furthermore, TAPPS will provide and validate an end-to-end solution for development and deployment of trusted apps, including an App Store and a model-based tool chain for trusted application development including verification tools. This multi-level trusted Apps platform and tool chain are matured and validated in health and automotive application domains using industrial, realistic use cases paving the way for future exploitation in further demanding application domains.


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: COMPET-01-2014 | Award Amount: 3.12M | Year: 2015

The growing complexity of space systems is creating the need for high speed networking technologies to interconnect the different elements of a spacecraft. This interest has spurred initiatives by both ESA and NASA to define the next generation networking technologies for Space. In both cases, Ethernet has been the preferred choice due to its wide adoption in terrestrial applications and because it is fully specified in standards to ensure interoperability. The requirements for integrated circuits that have to operate in space are very different from those that are used in terrestrial applications. In particular, the radiation is much more intense and causes several types of effects on the devices that compromise their reliability. Therefore, special rad-hard design and manufacturing techniques are needed for devices that will operate in space. This means that to implement Ethernet in space systems, rad-hard Ethernet components have to be designed. The goal of this proposal is to design and manufacture rad-hard Ethernet PHYs (Physical layer transceivers). In particular a 10/100Mbps PHY is targeted as the first short term objective. This device will enable the use of Ethernet in space systems and also provide the starting point for the long term objective of implementing a Gigabit Ethernet PHY for space. To that end, the proposal includes a feasibility study and also contributions to the 1000BASE-T-1 Ethernet standard. To implement the Ethernet PHYs, the consortium has significant analogue (Arquimea) and digital (IHP) design capabilities. In addition, it has also experience on the upper layers of Ethernet and its use in Space systems (TTTech) and on the design and implementation of Ethernet PHYs and Ethernet standards (Universidad de Nebrija). Finally, the electronic technology and manufacturing capabilities are also covered (ATMEL) as are the space system perspective and testing (Thales Alenia Space Spain).


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: ICT-01-2014 | Award Amount: 5.70M | Year: 2015

SAFURE targets the design of cyber-physical systems by implementing a methodology that ensures safety and security by construction. This methodology is enabled by a framework developed to extend system capabilities so as to control the concurrent effects of security threats on the system behaviour. The current approach for security on safety-critical embedded systems is generally to keep subsystems separated, but this approach is now being challenged by technological evolution towards openness, increased communications and use of multi-core architectures. The objectives of SAFURE are to (1) implement a holistic approach to safety and security of embedded dependable systems, preventing and detecting potential attacks; (2) to empower designers and developers with analysis methods, development tools and execution capabilities that jointly consider security and safety; (3) to set the ground for the development of SAFURE-compliant mixed-critical embedded products. The results of SAFURE will be (1) a framework with the capability to detect, prevent and protect from security threats on safety, able to monitor from application level down to the hardware level potential attacks to system integrity from time, energy, temperature and data threats; (2) a methodology that supports the joint design of safety and security of embedded systems, assisting the designer and developers with tools and modelling languages extensions; (3) proof-of concept through 3 industrial use cases in automotive and telecommunications; (4) recommendations for extensions of standards to integrate security on safety-critical systems; (5) specifications to design and develop SAFURE-compliant products. The impact of SAFURE will help European suppliers of safety-critical embedded products to develop more cost and energy-aware solutions. To ensure this impact, a community will be created around the project. SAFURE comprises 7 industrial manufacturers, 4 leading universities and research centres and 1 SME.


Grant
Agency: Cordis | Branch: FP7 | Program: CP | Phase: GC-ICT-2013.6.7 | Award Amount: 9.32M | Year: 2013

The promising advent of fully electric vehicles also means a shift towards fully electrical control of the existing and new vehicle functions. In particular, critical X-by-wire functions require sophisticated redundancy solutions. As a result, the overall Electric/Electronic (E/E) architecture of a vehicle is becoming even more complex and costly.The main idea of SafeAdapt is to develop novel architecture concepts based on adaptation to address the needs of a new F/E architecture for FEVs regarding safety, reliability and cost-efficiency. This will reduce the complexity of the system and the interactions by generic, system-wide fault and adaptation handling. It also enables extended reliability despite failures, improvements of active safety, and optimized resources. This is especially important for increasing reliability and efficiency regarding energy consumption, costs and design simplicity.SafeAdapt follows a holistic approach for building adaptable systems in safety-critical environments that comprises methods, tools, and building blocks for safe adaptation. This also includes certification support of safety-critical systems in the e-vehicle domain. The technical approach builds on a SafeAdapt Platform Core, encapsulating the basic adaptation mechanisms for re-allocating and updating functionalities in the networked, automotive control systems. This will be the basis for an interoperable and standardized solution for adaptation and fault handling in AUTOSAR. The SafeAdapt approach also considers functional safety with respect to the ISO 26262 standard.SafeAdapt provides an integrated approach for engineering such adaptive, complex and safe systems, ranging from tool chain support, reference architectures, modelling of system design and networking, up to early validation and verification. For realistic validation of the adaptation and redundancy concepts, an actual vehicle prototype with different and partly redundant applications is developed.


Grant
Agency: Cordis | Branch: H2020 | Program: IA | Phase: FoF-09-2015 | Award Amount: 9.52M | Year: 2015

BEinCPPS Innovation Action aims to integrate and experiment a CPS-oriented Future Internet-based machine-factory-cloud service platform firstly intensively in five selected Smart Specialization Strategy Vanguard regions (Lombardia in Italy, Euskadi in Spain, Baden Wuertemberg in Germany, Norte in Portugal, Rhone Alpes in France), afterwards extensively in all European regions, by involving local competence centers and manufacturing SMEs. The final aim of this Innovation Action is to dramatically improve the adoption of CPPSs all over Europe by means of the creation, nurturing and flourishing of CPS-driven regional innovation ecosystems, made of competence centers, manufacturing enterprises and IT SMEs. The BE in CPPS project stems upon three distinct pillars: A FI-based three-layered (machine-factory-cloud) open source platforms federation, integrated from state-of-the-art R&I advances in the fields of Internet of Things, Future Internet and CPS / Smart Systems and able to bi-directionally interoperate data pertaining to the machine, the factory and the cloud levels. A pan-European SME-oriented experimentation ecosystem. In a first phase of the project, the five Champions will provide requirements to the platforms integrators. In a second phase, an Open Call for IT SMEs developers (applications experiments) will award 10 third parties. In a final third phase, the extended platform will be instantiated and deployed in additional 10 third parties equipment experiment SMEs. A well-founded method and toolbox for Innovation management, where an existing TRL-based methodology for KETs technology transfer will be enriched by a CPPS certification, education and training programme for young talents and experienced blue collar workers and by a well-founded three-fold (objectives-variables-indicators) method for results assessment and evaluation.

Discover hidden collaborations