Tropical Weeds Research Center

Box Hill South, Australia

Tropical Weeds Research Center

Box Hill South, Australia
Time filter
Source Type

Panetta F.D.,Alan Fletcher Research Station | Cacho O.,University of New England of Australia | Hester S.,University of New England of Australia | Sims-Chilton N.,Alan Fletcher Research Station | Brooks S.,Tropical Weeds Research Center
Journal of Applied Ecology | Year: 2011

Weed eradication efforts often must be sustained for long periods owing to the existence of persistent seed banks, among other factors. Decision makers need to consider both the amount of investment required and the period over which investment must be maintained when determining whether to commit to (or continue) an eradication programme. However, a basis for estimating eradication programme duration based on simple data has been lacking. Here, we present a stochastic dynamic model that can provide such estimates. The model is based upon the rates of progression of infestations from the active to the monitoring state (i.e. no plants detected for at least 12months), rates of reversion of infestations from monitoring to the active state and the frequency distribution of time since last detection for all infestations. Isoquants that illustrate the combinations of progression and reversion parameters corresponding to eradication within different time frames are generated. The model is applied to ongoing eradication programmes targeting branched broomrape Orobanche ramosa and chromolaena Chromolaena odorata. The minimum periods in which eradication could potentially be achieved were 22 and 23years, respectively. On the basis of programme performance until 2008, however, eradication is predicted to take considerably longer for both species (on average, 62 and 248years, respectively). Performance of the branched broomrape programme could be best improved through reducing rates of reversion to the active state; for chromolaena, boosting rates of progression to the monitoring state is more important. Synthesis and applications.Our model for estimating weed eradication programme duration, which captures critical transitions between a limited number of states, is readily applicable to any weed. A particular strength of the method lies in its minimal data requirements. These comprise estimates of maximum seed persistence and infested area, plus consistent annual records of the detection (or otherwise) of the weed in each infestation. This work provides a framework for identifying where improvements in management are needed and a basis for testing the effectiveness of alternative tactics. If adopted, our approach should help improve decision making with regard to eradication as a management strategy. © 2011 The Authors. Journal of Applied Ecology © 2011 British Ecological Society.

Hester S.M.,University of New England of Australia | Brooks S.J.,Tropical Weeds Research Center | Cacho O.J.,University of New England of Australia | Panetta F.D.,Alan Fletcher Research Station
Weed Research | Year: 2010

A simulation model that combines biological, search and economic components is applied to the eradication of a Miconia calvescens infestation at El Arish in tropical Queensland, Australia. Information on the year M. calvescens was introduced to the site, the number of plants controlled and the timing of control, is used to show that currently there could be M. calvescens plants remaining undetected at the site, including some mature plants. Modelling results indicate that the eradication programme has had a significant impact on the population of M. calvescens, as shown by simulated results for uncontrolled and controlled populations. The model was also used to investigate the effect of changing search effort on the cost of and time to eradication. Control costs were found to be negligible over all levels of search effort tested. Importantly, results suggest eradication may be achieved within several decades, if resources are increased slightly from their current levels and if there is a long-term commitment to funding the eradication programme. © 2010 The Authors. Journal Compilation © 2010 European Weed Research Society.

Bebawi F.F.,Tropical Weeds Research Center | Vitelli J.S.,Biosecurity Queensland | Campbell S.D.,Tropical Weeds Research Center | Mayer R.J.,Economic Development and Innovation
Rangeland Journal | Year: 2011

Bellyache bush (Jatropha gossypiifolia L.) is an invasive weed that has the potential to greatly reduce biodiversity and pasture productivity in northern Australia's rangelands. This paper reports an approach to develop best practice options for controlling medium to dense infestations of bellyache bush using combinations of control methods. The efficacy of five single treatments including foliar spraying, slashing, stick raking, burning and do nothing (control) were compared against 15 combinations of these treatments over 4 successive years. Treatments were evaluated using several attributes, including plant mortality, changes in population demographics, seedling recruitment, pasture yield and cost of treatment. Foliar spraying once each year for 4 years proved the most cost-effective control strategy, with no bellyache bush plants recorded at the end of the study. Single applications of slashing, stick raking and to a lesser extent burning, when followed up with foliar spraying also led to significantly reduced densities of bellyache bush and changed the population from a growing one to a declining one. Total experimental cost estimates over 4 successive years for treatments where burning, stick raking, foliar spraying, and slashing were followed with foliar spraying were AU$408, AU$584, AU$802 and AU$789ha -1, respectively. Maximum pasture yield of 5.4 t ha -1 occurred with repeated foliar spraying. This study recommends that treatment combinations using either foliar spraying alone or as a follow up with slashing, stick raking or burning are best practice options following consideration of the level of control, changes in pasture yield and cost effectiveness. © Australian Rangeland Society 2011.

Bebawi F.F.,Tropical Weeds Research Center | Campbell S.D.,Tropical Weeds Research Center | Mayer R.J.,Maroochy Research Station
Rangeland Journal | Year: 2015

Understanding the reproductive biology of Calotropis procera (Aiton) W.T. Aiton, an invasive weed of northern Australia, is critical for development of effective management strategies. Two experiments are reported on. In Experiment 1 seed longevity of C. procera seeds, exposed to different soil type (clay and river loam), pasture cover (present and absent) and burial depth (0, 2.5, 10 and 20cm) treatments were examined. In Experiment 2 time to reach reproductive maturity was studied. The latter experiment included its sister species, C. gigantea (L.) W.T. Aiton, for comparison and two separate seed lots were tested in 2009 and 2012 to determine if exposure to different environmental conditions would influence persistence. Both seed lots demonstrated a rapid decline in viability over the first 3 months and declined to zero between 15 and 24 months after burial. In Experiment 1, longevity appeared to be most influenced by rainfall patterns and associated soil moisture, burial depth and soil type, but not the level of pasture cover. Experiment 2 showed that both C. procera and C. gigantea plants could flower once they had reached an average height of 85cm. However, they differed significantly in terms of basal diameter at first flowering with C. gigantea significantly smaller (31mm) than C. procera (45mm). On average, C. gigantea flowered earlier (125 days vs 190 days) and set seed earlier (359 days vs 412 days) than C. procera. These results suggest that, under similar conditions to those that prevailed in the present studies, land managers could potentially achieve effective control of patches of C. procera in 2 years if they are able to kill all original plants and treat seedling regrowth frequently enough to prevent it reaching reproductive maturity. This suggested control strategy is based on the proviso that replenishment of the seed bank is not occurring from external sources (e.g. wind and water dispersal). © Australian Rangeland Society 2015.

Bebawi F.F.,Tropical Weeds Research Center | Campbell S.D.,Tropical Weeds Research Center | Mayer R.J.,Maroochy Research Station
Rangeland Journal | Year: 2016

Chinee apple (Ziziphus mauritiana Lam.) is a thorny tree that is invading tropical woodlands of northern Australia. The present study reports three experiments related to the seed dynamics of chinee apple. Experiment 1 and 2 investigated persistence of seed lots under different soil types (clay and river loam), levels of pasture cover (present or absent) and burial depths (0, 2.5, 10 and 20cm). Experiment 3 determined the germination response of chinee apple seeds to a range of alternating day/night temperatures (11/6°C up to 52/40°C). In the longevity experiments (Expts 1 and 2), burial depth, soil type and burial duration significantly affected viability. Burial depth had the greatest influence, with surface located seeds generally persisting for longer than those buried below ground. Even so, no viable seeds remained after 18 and 24 months in the first and second experiment, respectively. In Expt 3 seeds of chinee apple germinated under a wide range of alternating day/night temperatures ranging from 16/12°C to 47 /36°C. Optimal germination (77%) occurred at 33/27°C and no seeds germinated at either of the lowest (11/6°C) or highest (52/40°C) temperature regimes tested. These findings indicated that chinee apple has the potential to expand its current distribution to cooler areas of Australia. Control practices need to be undertaken for at least two years to exhaust the seed bank. © Australian Rangeland Society 2016.

Bebawi F.F.,Tropical Weeds Research Center | Campbell S.D.,Tropical Weeds Research Center | Mayer R.J.,Maroochy Research Station
Rangeland Journal | Year: 2014

Cascabela thevetia (L.) Lippold (Apocynaceae) is an invasive woody weed that has formed large infestations at several locations in northern Australia. Understanding the reproductive biology of C. thevetia is vital to its management. This paper reports results of a shade house experiment that determined the effects of light conditions (100% or 30% of natural light) and plant densities (one, two, four or eight plants per plot) on the growth, time to flowering and seed formation, and monthly pod production of two C. thevetia biotypes (peach and yellow). Shaded plants were significantly larger when they reached reproductive maturity than plants grown under natural light. However, plants grown under natural light flowered earlier (268 days compared with 369 days) and produced 488 more pods per pot (a 5-fold increase) over 3 years. The yellow biotype was slightly taller at reproductive maturity but significantly taller and with significantly greater aboveground biomass at the end of the study. Both biotypes flowered at a similar time under natural light and low plant densities but the yellow biotype was quicker to seed (478 versus 498 days), produced significantly more pods (364 versus 203 pods) and more shoot growth (577g versus 550g) than the peach biotype over 3 years. Higher densities of C. thevetia tended to significantly reduce the shoot and root growth by 981g and 714g per plant across all light conditions and biotypes over 3 years and increase the time taken to flower by 140 days and produce seeds by 184 days. For land managers trying to prevent establishment of C. thevetia or to control seedling regrowth once initial infestations have been treated, this study indicates that young plants have the potential to flower and produce seeds within 268 and 353 days, respectively. However, with plant growth and reproduction most likely to be slower under field conditions, annual surveillance and control activities should be sufficient to find and treat plants before they produce seeds and replenish soil seed banks. The most at-risk part of the landscape may be open areas that receive maximum sunlight, particularly within riparian habitats where plants would consistently have more favourable soil moisture conditions.

Cooper A.,James Cook University | Goullet M.,Ferals Out | Mitchell J.,Tropical Weeds Research Center | Ketheesan N.,James Cook University | Govan B.,James Cook University
Epidemiology and Infection | Year: 2012

The state of Queensland has the highest incidence of Q fever in Australia. In recent years, there has been an increase in human cases where no contacts with the typical reservoir animals or occupations were reported. The aim of this study was to determine the seroprevalence of Coxiella burnetii in Australian native animals and introduced animals in northern and southeastern Queensland. Australian native marsupials sampled included the brushtail possum (Trichosurus vulpecula) and common northern bandicoot (Isoodon macrourus). Introduced species sampled included dingoes (Canis lupus dingo), cats (Felis catus), foxes (Vulpes vulpes) and pigs (Sus scrofa). Serum samples were tested by ELISA for both phase II and phase I antigens of the organism using an Australian isolate. The serological evidence of C. burnetii infection demonstrated in these species has public health implications due to their increasing movement into residential areas in regional Queensland. This study is the first known investigation of C. burnetii seroprevalence in these species in northern Queensland. © 2012 Cambridge University Press.

Bebawi F.F.,Tropical Weeds Research Center | Campbell S.D.,Tropical Weeds Research Center | Mayer R.J.,Agri Science Queensland
Rangeland Journal | Year: 2013

Bellyache bush (Jatropha gossypiifolia L.) is an invasive weed that poses economic and environmental problems in northern Australia. Competition between pasture and bellyache bush was examined in North Queensland using combinations of five pasture treatments (uncut (control); cut as low, medium, and high pasture; and no pasture) and four bellyache bush densities (0, 2, 6 and 12plantsm-2) in a buffel grass (Cenchrus ciliaris L.) dominated pasture. The pasture treatments were applied approximately once per year but no treatments were applied directly to the bellyache bush plants. Measurements of bellyache bush flowering, seed formation, and mortality were undertaken over a 9-year period, along with monitoring the pasture basal cover and plant species diversity. Maximum flowering rates of bellyache bush occurred after 9 years (97%) in plots containing no pasture, with the lowest rates of 9% in uncut control plots. Earliest flowering (322 days after planting) and seed formation (411 days) also occurred in plots with no pasture compared with all other pasture treatments (range 1314-1393 days for seed formation to occur). No seeds were produced in uncut plots. At the end of 9 years, mortality rates of bellyache bush plants initially planted averaged ≥73% for treatments with some pasture compared with 55% under the no-pasture treatment. The percentage of herbaceous plant basal cover in uncut plots was increased 5-fold after 9 years, much greater than the average 2% increase recorded across the low, medium, and high pasture treatments. The number of herbaceous species in uncut plots remained largely unchanged, whereas there was an average reduction of 46% in the cut pasture treatments. Buffel grass remained the species with the greatest basal cover across all cut pasture treatments, followed by sabi grass (Urochloa mosambicensis (Hack.) Dandy) and then red Natal grass (Melinis repens (Willd.) Ziska). These results suggest that grazing strategies that maintain a healthy and competitive pasture layer may contribute to reducing the rate of spread of bellyache bush and complement traditional control techniques such as the use of herbicides.Journal compilation © Australian Rangeland Society 2013.

Bebawi F.F.,Tropical Weeds Research Center | Campbell S.D.,Tropical Weeds Research Center | Mayer R.J.,Agri Science Queensland
Rangeland Journal | Year: 2012

Bellyache bush (Jatropha gossypifolia L.) is an invasive shrub that adversely impacts agricultural and natural systems of northern Australia. While several techniques are available to control bellyache bush, depletion of soil seed banks is central to its management. A 10-year study determined the persistence of intact and ant-discarded bellyache bush seeds buried in shade cloth packets at six depths (ranging from 0 to 40cm) under both natural rainfall and rainfall-excluded conditions. A second study monitored changes in seedling emergence over time, to provide an indication of the natural rate of seed bank depletion at two sites (rocky and heavy clay) following the physical removal of all bellyache bush plants. Persistence of seed in the burial trial varied depending on seed type, rainfall conditions and burial depth. No viable seeds of bellyache bush remained after 72 months irrespective of seed type under natural rainfall conditions. When rainfall was excluded seeds persisted for much longer, with a small portion (0.4%) of ant-discarded seeds still viable after 120 months. Seed persistence was prolonged (96 months to decline to 1% viability) at all burial depths under rainfall-excluded conditions. In contrast, under natural rainfall, surface located seeds took twice as long (70 months) to decline to 1% viability compared with buried seeds (35 months). No seedling emergence was observed after 58 months and 36 months at the rocky and heavy clay soil sites, respectively. These results suggest that the required duration of control programs on bellyache bush may vary due to the effect of biotic and abiotic factors on persistence of soil seed banks. © 2012 Australian Rangeland Society.

Lockett C.J.,Biosecurity Queensland | Dhileepan K.,Biosecurity Queensland | Robinson M.,Tropical Weeds Research Center | Pukallus K.J.,Tropical Weeds Research Center
Biological Control | Year: 2012

A leaf-feeding geometrid, . Chiasmia assimilis (Warren), was introduced into northern Queensland from South Africa in 2002 as a biological control agent for the invasive woody weed, prickly acacia, . Acacia nilotica subsp. . indica (Bentham) Brenan. The insect established in infestations in coastal areas between the townships of Ayr and Bowen where the larvae periodically cause extensive defoliation at some localities during summer and autumn. The impact of this herbivory on a number of plant parameters, including shoot length, basal stem diameter, root length, number of leaves, number of branches, and above and below ground biomass was investigated at one coastal site through an insect exclusion trial using potted seedlings and regular spray applications of a systemic insecticide to exclude the biological control agent. Half the seedlings, both sprayed and unsprayed, were placed beneath the prickly acacia canopy, the other half were placed in full sunlight. Larvae of . C. assimilis were found on unsprayed seedlings in both situations. The effects of herbivory, however, were significant only for seedlings grown beneath the canopy. At the end of the five-month trial period, shoot length of these seedlings was reduced by 30%, basal stem diameter by 44%, root length by 15%, number of leaves by 97%, above ground biomass by 87%, and below ground biomass by 77% when compared to sprayed seedlings. Implications are that the insect, where established, may reduce seedling growth beneath existing canopies and in turn may help limit the formation of dense infestations. © 2012.

Loading Tropical Weeds Research Center collaborators
Loading Tropical Weeds Research Center collaborators