Time filter

Source Type

Harbin, China

Zhang X.,Liaoning Province Benxi Center Hospital | Zhang X.,Research Laboratory | Zhang X.,Key Laboratory of Medical Cell Biology | Liang D.,Troops of 95935 Unit | And 6 more authors.

Apoptosis of tubular epithelial cells is a major feature of diabetic kidney disease, and hyperglycemia triggers the generation of free radicals and oxidant stress in tubular cells. Berberine (BBR) is identified as a potential anti-diabetic herbal medicine due to its beneficial effects on insulin sensitivity, glucose metabolism and glycolysis. In this study, the underlying mechanisms involved in the protective effects of BBR on high glucose-induced apoptosis were explored using cultured renal tubular epithelial cells (NRK-52E cells) and human kidney proximal tubular cell line (HK-2 cells). We identified the pivotal role of phosphatidylinositol 3-kinase (PI3K)/Akt in BBR cellular defense mechanisms and revealed the novel effect of BBR on nuclear factor (erythroid-derived 2)-related factor-2 (Nrf2) and heme oxygenase (HO)-1 in NRK-52E and HK-2 cells. BBR attenuated reactive oxygen species production, antioxidant defense (GSH and SOD) and oxidant-sensitive proteins (Nrf2 and HO-1), which also were blocked by LY294002 (an inhibitor of PI3K) in HG-treated NRK-52E and HK-2 cells. Furthermore, BBR improved mitochondrial function by increasing mitochondrial membrane potential. BBR-induced anti-apoptotic function was demonstrated by decreasing apoptotic proteins (cytochrome c, Bax, caspase3 and caspase9). All these findings suggest that BBR exerts the anti-apoptosis effects through activation of PI3K/Akt signal pathways and leads to activation of Nrf2 and induction of Nrf2 target genes, and consequently protecting the renal tubular epithelial cells from HG-induced apoptosis. © 2016, Springer Science+Business Media New York. Source

Zhang X.,Liaoning Medical University | Zhang X.,Benxi Center Hospital | Zhao Y.,Liaoning Medical University | Chu Q.,Liaoning Medical University | And 3 more authors.
Biological Trace Element Research

Hyperglycemia is a characteristic of diabetic nephropathy, inducing renal tubular cell apoptosis by eliciting oxidative stress and inflammation. Zinc (Zn) is known as an essential trace element in many enzymes and proteins involved in antioxidant defenses, electron transport, and exerting antiapoptotic or cytoprotective effects. In this study, the underlying mechanisms involved in the protective effects of Zn on high glucose-induced cytotoxicity were explored using cultured renal tubular epithelial cells (NRK-52E). The authors discovered that Zn supplementation inhibited high glucose (HG)-induced NRK-52E cell apoptosis by attenuating reactive oxygen species production, inhibiting HG-induced caspase-3 and caspase-9 activation, and inhibiting the release of cytochrome c from mitochondria to the cytosol. Further analysis revealed that Zn supplementation facilitated cell survival through increasing nuclear translocation of NF-E2-related factor 2 (Nrf2), leading to increased regulation of levels of two antioxidant enzymes, hemeoxygenase-1 and glutamate cysteine ligase, which provided an adaptive survival response against the HG-induced oxidative cytotoxicity. Moreover, the Zn-mediated increases in Nrf2 activity were suppressed by the pharmacological inhibition of Akt or extracellular signal-regulated kinase 1/2. Taken together, these findings suggest that Zn antiapoptosis capacity through the activation of Akt and ERK signal pathways leads to Nrf2 activation and, subsequently, Nrf2 target gene induction, thereby protecting the NRK-52E cells from HG-induced apoptosis. © 2014 Springer Science+Business Media. Source

Zhang X.,Key Laboratory of Medical Cell Biology | Zhang X.,Benxi Center Hospital | Liang D.,Troops of 95935 Unit | Fan J.,Shuangcheng District Peoples Hospital | And 6 more authors.
Biological Trace Element Research

Evidence has demonstrated that hypoxia may have a central pathogenic mechanism in the development of diabetic nephropathy (DN). Epithelial-to-mesenchymal transition (EMT) of mature tubular epithelial cells in kidney is a contributor to the renal accumulation of matrix protein in DN and is highly associated with the progression of tubulointerstitial fibrosis. Zinc (Zn) has anti-fibrosis effects in liver and lungs. In the present study, we aimed to investigate the effect of Zn on renal tubulointerstitial fibrosis especially under hypoxic conditions and its association with DN. We found that Zn treatment blockaded tubular EMT and attenuated renal tubulointerstitial fibrosis by downregulation of hypoxia-inducible factor alpha (HIF-1α) in the kidneys of diabetic streptozotocin-treated mice. High glucose (HG)/hypoxic conditions stimulated EMT in renal tubular cells as indicated by the significant decrease in epithelial marker E-cadherin and ZO-1 while the increase in mesenchymal markers α-smooth muscle actin (α-SMA). Zn supplement mainly prevented HG/hypoxic-induced HIF-1α accumulation and EMT marker changes. In co-treatment Zn with PI3K/Akt/GSK-3β signaling pathway, inhibitor LY294002 prevented HG/hypoxic-induced HIF-1α increase and EMT changes, suggesting that Zn may mediate HG/hypoxic-induced EMT through PI3K/Akt/GSK-3β pathway. Therefore, we concluded that Zn had an important anti-fibrosis role under HG/hypoxic conditions, and a novel mechanism contributing to Zn protection on renal tubular epithelial cells from HG/hypoxia-induced EMT through activation of PI3K/Akt/GSK-3β signaling pathway, which subsequently leads to the downregulation of the expression of HIF-1α. © 2016 Springer Science+Business Media New York Source

Chu Q.,Liaoning Medical University | Chi Z.-H.,Liaoning Medical University | Zhang X.,Liaoning Medical University | Liang D.,Troops of 95935 Unit | And 4 more authors.
International Journal of Molecular Medicine

Previous studies have demonstrated that zinc (Zn) is an essential trace element which is involved in male reproduction. The zinc transporter (ZnT) family, SLC30a, is involved in the maintenance of Zn homeostasis and in mediating intracellular signaling events; however, relatively little is known regarding the effect of ZnTs on testosterone synthesis. Thus, in the present study, we aimed to determine the effect of Zn transporter 7 (ZnT7) on testosterone synthesis in male CD-1 mice and mouse Leydig cells. The findings of the present study revealed that the concentrations of Zn in the testes and Leydig cells were significantly lower in mice fed a Zn-deficient diet compared with the control mice fed a Zn-adequate diet. In addition, ZnT7 was principally expressed and colocalized with steroidogenic acute regulatory protein (StAR) in the Leydig cells of male CD-1 mice. ZnT7 expression was downregulated in the mice fed a Zn-deficient diet, which led to decreases in the expression of the enzymes involved in testosterone synthesis namely cholesterol side chain cleavage enzyme (P450scc) and 3hydroxysteroid dehydrogenase/D5-D4 isomerase (3HSD) as well as decreased serum testosterone levels. These results suggested that Znt7 may be involved in testosterone synthesis in the mouse testes. To examine this hypothesis, we used the mouse Leydig tumor cell line (MLTC-1 cell line) in which the ZnT7 gene had been silenced, in order to gauge the impact of changes in ZnT7 expression on testosterone secretion and the enzymes involved in testosterone synthesis. The results demonstrated that ZnT7 gene silencing downregulated the expression of StAR, P450scc and 3HSD as well as progesterone concentrations in the human chorionic gonadotrophin (hCG)-stimulated MLTC-1 cells. Taken together, these findings reveal that ZnT7 may play an important role in the regulation of testosterone synthesis by modulating steroidogenic enzymes, and may represent a therapeutic target in testosterone deficiency. Source

Liang D.,Liaoning Medical University | Liang D.,Troops of 95935 Unit | Yang M.,Liaoning Medical University | Guo B.,Liaoning Medical University | And 5 more authors.
Biological Trace Element Research

Zinc has been shown to increase bone mass and promote bone cell proliferation and differentiation. We, therefore, hypothesized that zinc might be cytoprotective for bone cells during oxidative stress. The cells were divided into H2O2, zinc and zinc+H2O2 groups. In the present study, zinc was found to inhibit H2O 2-induced apoptosis in MC3T3-E1 cells, as shown by analysis of Annexin V/PI double staining. Western blot data showed that in zinc+H 2O2-treated cells, zinc decreased the levels of AIF, Bax and active caspase-9 and -3, which are pro-apoptotic factors. And zinc inhibited release of cytochrome c from mitochondria to cytosol in zinc+H 2O2-treated cells. Further investigation shows that protection is via activation of PI3K/Akt/mTor and MAPK /ERK pathways and inhibition of MAPK/P38 and MAPK/JNK pathways. Protecting osteoblast cells from oxidative damage presents a potential application in the treatment of osteoporosis. © 2011 Springer Science+Business Media, LLC. Source

Discover hidden collaborations