Newark, CA, United States

Time filter

Source Type

Patent
Triple Ring Technologies, Inc. | Date: 2016-10-24

The present invention pertains to a system and method for X-ray imaging wherein a targeted fluence at the detector for projection images can be achieved at a plurality of projection angles around the imaging subject by control of exposure times implemented during image acquisition. Exposure time for a second projection image may be determined by the fluence in a first projection image, and in a third projection image by the fluence in a second projection image, where projection images are acquired within two degrees of one another. An acquisition parameter calculation can be configured to calculate acquisition parameters, such as said exposure times, to achieve the targeted fluence in projection images and can be coupled to a rotation controller that implements the acquisition parameters by controlling a relative angle between the imaging subject and X-ray image acquisition device.


Patent
Triple Ring Technologies, Inc. | Date: 2015-05-15

The present invention pertains to a system and method for X-ray imaging wherein a targeted fluence at the detector for projection images can be achieved at a plurality of projection angles around the imaging subject by control of exposure times implemented during image acquisition. Exposure time for a second projection image may be determined by the fluence in a first projection image, and in a third projection image by the fluence in a second projection image, where projection images are acquired within two degrees of one another. An acquisition parameter calculation can be configured to calculate acquisition parameters, such as said exposure times, to achieve the targeted fluence in projection images and can be coupled to a rotation controller that implements the acquisition parameters by controlling a relative angle between the imaging subject and X-ray image acquisition device.


Patent
Triple Ring Technologies, Inc. | Date: 2015-10-29

The present invention pertains to a system and method for adaptive X-ray filtration comprising a volume of X-ray attenuating material with a central less attenuating three-dimensional region. The volume of X-ray attenuating material can be positioned within 10 cm from an X-ray source and rotated around an internal axis of rotation. The volume of X-ray attenuating material can be symmetric around the internal axis while the central less attenuating region can be asymmetric around the internal axis. Rotating the volume by a predetermined angle around the internal axis can change the amount of attenuation of an X-ray beam through the filter. The volume can be rotated by the same predetermined angle as an imaging subject or X-ray source and detector are rotated during X-ray image acquisition.


Patent
Triple Ring Technologies, Inc. | Date: 2016-08-30

The present invention pertains to a system and method for adaptive X-ray filtration comprising a volume of X-ray attenuating material with a central less attenuating three-dimensional region. The volume of X-ray attenuating material can be positioned within 10 cm from an X-ray source and rotated around an internal axis of rotation. The volume of X-ray attenuating material can be symmetric around the internal axis while the central less attenuating region can be asymmetric around the internal axis. Rotating the volume by a predetermined angle around the internal axis can change the amount of attenuation of an X-ray beam through the filter. The volume can be rotated by the same predetermined angle as an imaging subject or X-ray source and detector are rotated during X-ray image acquisition.


Patent
Triple Ring Technologies, Inc. | Date: 2015-10-16

An x-ray imaging system utilizes enhanced computing arrays. A plurality of x-ray illumination source positions are utilized to produce x-ray radiation at each of the x-ray illumination source positions and to project x-ray radiation towards an object. A detector detects x-ray radiation from the object and transmits detector images for each of the illumination source positions. A memory buffer stores the detector images from the detector. A graphics processing unit formats the detector images and constructs a complete frame data set with the detector images for each of the illumination source positions. Another graphics processing unit receives the complete frame data set and performs image reconstruction on the complete frame data set.


Patent
Triple Ring Technologies, Inc. | Date: 2015-11-16

The present invention pertains to a system and method for X-ray imaging wherein a targeted fluence at the detector for projection images can be achieved at a plurality of projection angles around the imaging subject by control of exposure times implemented during image acquisition. Exposure time for a second projection image may be determined by the fluence in a first projection image, and in a third projection image by the fluence in a second projection image, where projection images are acquired within two degrees of one another. An acquisition parameter calculation can be configured to calculate acquisition parameters, such as said exposure times, to achieve the targeted fluence in projection images and can be coupled to a rotation controller that implements the acquisition parameters by controlling a relative angle between the imaging subject and X-ray image acquisition device.


Patent
Triple Ring Technologies, Inc. | Date: 2015-03-26

The present invention pertains to an apparatus and method for medical imaging comprising rotating two X-ray source-detector pairs around an axis of rotation simultaneously to quickly acquire image data and form a computed tomography (CT) dataset. The sources can be configured to emit radiation from a plurality of discrete locations. The CT dataset can be utilized as a prior to reconstruct a three-dimensional image from subsequent bi-planar imaging with these source-detector pairs.


Patent
Triple Ring Technologies, Inc. | Date: 2015-04-17

The present invention pertains to an apparatus and method for X-ray imaging a human patient. A vacuum bell bonded to an X-ray radiation-permeable window that can emit X-ray radiation from a plurality of spots located 1 cm from its edge, a collimator, and a detector are used. A ring of stationary X-ray sources can also be used with a stationary collimator and a rotating slot collimator and detector. An X-ray beam can be aligned in an X-ray system by establishing a position of the beam with respect to a moving collimator at a number of points in time, monitoring the velocity of the collimator, navigating the beam to a calculated position of a hole in the collimator, and correcting the alignment of the beam based on the location of the beam on the detector.


Patent
Triple Ring Technologies, Inc. | Date: 2016-02-08

The present invention pertains to an apparatus and method for adaptive exposure in imaging systems. An x-ray source for producing x-ray radiation and an x-ray detector for measuring amount of x-ray radiation passing through the human patient and striking the detector can be used. A tomographic image of the human patient or a tomosynthetic image of the human patient can be generated. Region of interest filtering and equalization filtering can be utilized. Filtering can be accomplished with a mechanical shield or shutter or with electronic control of the x-ray source.


Grant
Agency: Department of Homeland Security | Branch: | Program: SBIR | Phase: Phase II | Award Amount: 746.45K | Year: 2015

This proposed effort will develop the Particle/Ray Interaction Simulation Manager (PRISM) software platform which was begun as a Phase I program. The goal of PRISM is to meet the x-ray simulation needs of the explosive detection community. In Phase I a user survey was conducted of a wide range of system manufacturers who reported that existing simulation tools do not meet their desired needs for ease-of-use, run time, or modelling of complex objects. Therefor we are designing PRISM to leverage these existing tools, while adding an easy-to-use graphical interface for specifying system parameters and visualizing models. In this way PRISM will create a unified user-interface wrapper for commonly used simulation tools, which we hope will be of high value to the user community. PRISM will have the following key features: (1) User interfaces for both expert and non-expert users, (2) Open-source architecture that can be linked to numerous simulation tools, (3) Input from CAD files so that complicated objects can be easily modeled, (4) A digital luggage and cargo library tested with experimental data. The final deliverable will be a functional, commercial-grade, open-source, PRISM platform, which will provide an easy-to-use interface for defining simulation structures. PRISM will initially be fully integrated with GEANT4, but will be architected for future expansion to other simulation tools. As part of the commercialization plan, Triple Ring will provide customization services and additional library models.

Loading Triple Ring Technologies, Inc. collaborators
Loading Triple Ring Technologies, Inc. collaborators