Changzhou, China

Time filter

Source Type

A method and apparatus for detecting crystal orientation of a silicon wafer is proposed. The detection method uses a camera shooting device to irradiate the silicon wafer in a rotation manner in different angular directions and obtains the corresponding reflection intensities, based on which a reflection curve is drawn for a grain of interest in a polar coordinate system; normal directions of three or more faces of a regular octahedron of a grain <111> are determined by identifying a pixel brightness extreme value in the reflection curve, and then all normal vectors of the regular octahedron are calculated, so that a crystal orientation of the grain of interest may be calculated. The camera shooting device has a light source and one or more camera shooting probes.


A method and apparatus for detecting crystal orientation of a silicon wafer is proposed. The detection method uses a camera shooting device to irradiate the silicon wafer in a rotation manner in different angular directions and obtains the corresponding reflection intensities, based on which a reflection curve is drawn for a grain of interest in a polar coordinate system; normal directions of three or more faces of a regular octahedron of a grain <111> are determined by identifying a pixel brightness extreme value in the reflection curve, and then all normal vectors of the regular octahedron are calculated, so that a crystal orientation of the grain of interest may be calculated. The camera shooting device comprises a light source and one or more camera shooting probes.


In February 2014, Trina Solar and the Australian National University (ANU) jointly announced a world record aperture efficiency of 24.37% for a laboratory-scale 4cm2 IBC solar cell, fabricated on a Float Zone (FZ) n-type substrate and using photolithography patterning. In December 2014, Trina Solar announced a 22.94% total-area efficiency for an industrial version, large size (156x 156mm2, 6" substrate), IBC solar cell. In April 2016, Trina Solar announced an improved industrial low-cost IBC solar cell with a total-area efficiency of 23.5%. The new record of 24.13% total-area efficiency is just 0.24% absolute below the small-area laboratory cell record aperture-efficiency jointly established by the Company and ANU. Total-area efficiencies are always lower than aperture-efficiencies, due to efficiency losses related to the edges of the cells and electrical contact areas. "We are very delighted to announce the latest achievement from our research team at the SKL PVST. Over the last few years, our R&D team has managed to continuously improve the efficiency of our n-type IBC solar cells, pushing the limits and surpassing our previous records, and approaching very closely to the performance of our best small-area laboratory cell developed in collaboration with ANU three years ago." said Dr. Pierre Verlinden, Vice-President and Chief Scientist of Trina Solar. "IBC solar cells are one of the most efficient silicon solar cells available today and are particularly suitable for applications for which the requirement of a high power density is more important than LCOE (Levelized Cost of Electricity). Our IBC cell program has always focused on the development of large-area cells and low-cost industrial processes. We are very happy to announce today that our industrial large area IBC cell has reached almost the same level of performance as the small-area laboratory cell made three years ago with a photolithography process. In an innovation-driven PV industry, Trina Solar is always focused on developing leading-edge PV technologies and products with improved cell efficiency and reduced system cost. Our goal is to insist on technological innovation, and transform as quickly as possible the laboratory technology into commercial production." Trina Solar Limited is a global leader in solar photovoltaic modules, solutions and services. Founded in 1997 as a PV system integrator, Trina Solar today drives smart energy together with installers, distributors, utilities and developers worldwide. For more information, please visit www.trinasolar.com.


CHANGZHOU, China, May 5, 2017 /PRNewswire/ -- Trina Solar ("Trina Solar" or the "Company"), a global leader in photovoltaic (PV) modules, solutions and services, today announced that its State Key Laboratory (SKL) of PV Science and Technology (PVST) has set a new record of 24.13% total-area efficiency for a large-area (156 x 156mm2) n-type mono-crystalline silicon (c-Si) Interdigitated Back Contact (IBC) solar cell. The record-breaking n-type mono-crystalline silicon solar cell was fabricated on a large-sized phosphorous-doped Cz Silicon substrate with a low-cost industrial IBC process, featuring conventional tube doping technologies and fully screen-printed metallization. The 156×156 mm2 solar cell reached a total-area efficiency of 24.13% as independently measured by the Japan Electrical Safety & Environment Technology Laboratories (JET). The IBC solar cell has a total measured area of 243.3cm2 and was measured without any aperture. The champion cell presents the following characteristics: an open-circuit voltage V of 702.7mV, a short-circuit current density J of 42.1 mA/cm2 and a fill factor FF of 81.47%. In February 2014, Trina Solar and the Australian National University (ANU) jointly announced a world record aperture efficiency of 24.37% for a laboratory-scale 4cm2 IBC solar cell, fabricated on a Float Zone (FZ) n-type substrate and using photolithography patterning. In December 2014, Trina Solar announced a 22.94% total-area efficiency for an industrial version, large size (156x 156mm2, 6" substrate), IBC solar cell. In April 2016, Trina Solar announced an improved industrial low-cost IBC solar cell with a total-area efficiency of 23.5%. The new record of 24.13% total-area efficiency is just 0.24% absolute below the small-area laboratory cell record aperture-efficiency jointly established by the Company and ANU. Total-area efficiencies are always lower than aperture-efficiencies, due to efficiency losses related to the edges of the cells and electrical contact areas. "We are very delighted to announce the latest achievement from our research team at the SKL PVST. Over the last few years, our R&D team has managed to continuously improve the efficiency of our n-type IBC solar cells, pushing the limits and surpassing our previous records, and approaching very closely to the performance of our best small-area laboratory cell developed in collaboration with ANU three years ago." said Dr. Pierre Verlinden, Vice-President and Chief Scientist of Trina Solar. "IBC solar cells are one of the most efficient silicon solar cells available today and are particularly suitable for applications for which the requirement of a high power density is more important than LCOE (Levelized Cost of Electricity). Our IBC cell program has always focused on the development of large-area cells and low-cost industrial processes. We are very happy to announce today that our industrial large area IBC cell has reached almost the same level of performance as the small-area laboratory cell made three years ago with a photolithography process. In an innovation-driven PV industry, Trina Solar is always focused on developing leading-edge PV technologies and products with improved cell efficiency and reduced system cost. Our goal is to insist on technological innovation, and transform as quickly as possible the laboratory technology into commercial production." Trina Solar Limited is a global leader in solar photovoltaic modules, solutions and services. Founded in 1997 as a PV system integrator, Trina Solar today drives smart energy together with installers, distributors, utilities and developers worldwide. For more information, please visit www.trinasolar.com.


In February 2014, Trina Solar and the Australian National University (ANU) jointly announced a world record aperture efficiency of 24.37% for a laboratory-scale 4cm2 IBC solar cell, fabricated on a Float Zone (FZ) n-type substrate and using photolithography patterning. In December 2014, Trina Solar announced a 22.94% total-area efficiency for an industrial version, large size (156x 156mm2, 6" substrate), IBC solar cell. In April 2016, Trina Solar announced an improved industrial low-cost IBC solar cell with a total-area efficiency of 23.5%. The new record of 24.13% total-area efficiency is just 0.24% absolute below the small-area laboratory cell record aperture-efficiency jointly established by the Company and ANU. Total-area efficiencies are always lower than aperture-efficiencies, due to efficiency losses related to the edges of the cells and electrical contact areas. "We are very delighted to announce the latest achievement from our research team at the SKL PVST. Over the last few years, our R&D team has managed to continuously improve the efficiency of our n-type IBC solar cells, pushing the limits and surpassing our previous records, and approaching very closely to the performance of our best small-area laboratory cell developed in collaboration with ANU three years ago." said Dr. Pierre Verlinden, Vice-President and Chief Scientist of Trina Solar. "IBC solar cells are one of the most efficient silicon solar cells available today and are particularly suitable for applications for which the requirement of a high power density is more important than LCOE (Levelized Cost of Electricity). Our IBC cell program has always focused on the development of large-area cells and low-cost industrial processes. We are very happy to announce today that our industrial large area IBC cell has reached almost the same level of performance as the small-area laboratory cell made three years ago with a photolithography process. In an innovation-driven PV industry, Trina Solar is always focused on developing leading-edge PV technologies and products with improved cell efficiency and reduced system cost. Our goal is to insist on technological innovation, and transform as quickly as possible the laboratory technology into commercial production." Trina Solar Limited is a global leader in solar photovoltaic modules, solutions and services. Founded in 1997 as a PV system integrator, Trina Solar today drives smart energy together with installers, distributors, utilities and developers worldwide. For more information, please visit www.trinasolar.com. To view the original version on PR Newswire, visit:http://www.prnewswire.com/news-releases/trina-solar-announces-new-efficiency-record-of-2413-for-ibc-mono-crystalline-silicon-solar-cell-300452197.html


Disclosed are a back-surface bridge type contact electrode of a crystalline silicon solar battery and a preparation method therefor. The back-surface bridge type contact electrode of a crystalline silicon solar battery includes a local electrode connected to a local back surface field and a back surface electrode which is covered with a back surface passivation film on a contact surface with a silicon wafer substrate, at least one bridge electrode is provided between the local electrode and the back surface electrode, the contact surface of the bridge electrode and the silicon wafer substrate is also covered with the back surface passivation film, the local electrode is connected to the back surface electrode via the bridge electrode, and the back surface passivation film is also provided, besides at the connection region of the bridge electrode, between the local electrode and the back surface electrode.


Patent
Trina Solar Ltd | Date: 2010-11-03

The present invention provides a solar module having multiple junction boxes, including solar panels, which are series-connected in series via tabbing ribbons and junction boxes. The junction boxes include a junction box with diodes which has by-pass function, and junction box without diodes which has power output function. The junction box with diodes and the junction box without diodes are connected to the solar panels respectively via bus ribbons. The junction box with diodes and the junction box without diodes are connected via external cables. The junction box without diodes is connected to a junction box cable. By increasing the amount of junction boxes and decreasing the length of connecting solder ribbon the present invention solves the problem of relatively low output power and relatively high loss when the solar module in prior art is used.


A folding photovoltaic mounting structure and mounting method thereof is disclosed. A folding module, comprising: a panel having a front side and a backside; a first support block and a second support block disposed on the backside of the panel adjacent to two sides of the panel respectively; and a first support member and a second support member, the first support member connected with the first support block via a first hinge, and the second support member connected with the second support block via a second hinge, wherein the first support member and the second support member can fold and rotate about the first hinge and the second hinge respectively. A further photovoltaic module mounting structure, comprising: a plurality of photovoltaic modules, each of which is attached with: a first backside securing block connector member and a first backside hook connector member attached to a first side of the photovoltaic module, the first backside securing block connector member and the first backside hook connector member further attached to a front bracket assembly; a second backside securing block connector member and a second backside hook connector member attached to a second side of the photovoltaic module, the second backside securing block connector member and the second backside hook connector member further attached to a rear bracket assembly; wherein the front bracket assembly is freely rotatable about the first backside securing block connector member and the first backside hook connector member, and the rear bracket assembly is freely rotatable about the second backside securing block connector member and the second backside hook connector member.


Patent
Trina Solar Ltd | Date: 2011-10-21

A method of fabricating an all-back-contact (ABC) solar cell, and an ABC solar cell. The method comprises the steps of forming respective pluralities of different polarity rear side doped regions on a wafer; forming an insulating layer on the doped regions; and forming conducting bars on the insulating layer such that each conducting bar is in electrical contact with different ones of the doped regions of the same polarity.


Patent
Trina Solar Ltd | Date: 2011-11-16

A method of fabricating an all-back-contact (ABC) solar cell is disclosed. A doped layer of a first polarity (102) is formed on a rear side of a wafer (100). A first masking structure (106, 110) is formed on the doped layer of the first polarity. Portions of the first masking structure (106, 110) are removed using a first laser ablation process. Doped regions of a second polarity (118, 135, 137) are formed in areas where the first masking structure has been removed. Contact bars (134, 136) are formed by screen printing and firing such that each contact bar is in contact with one of the doped regions (135, 137).

Loading TRINA SOLAR LTD collaborators
Loading TRINA SOLAR LTD collaborators