Sunnyvale, CA, United States
Sunnyvale, CA, United States
SEARCH FILTERS
Time filter
Source Type

Patent
Trimble | Date: 2017-01-26

A system for managing kinematic assets is disclosed. In one embodiment, the system comprises an electronic identification device associated with an asset. The system further comprises a container comprising a reader disposed within the container for receiving a unique identification of the identification device. The container further comprises a reader node for maintaining an inventory record comprising the asset and for generating a report when the asset is not detected by said reader. The report further comprises a location of the container when said report is generated. The system further comprises a kinematic asset management platform comprising an asset registry for storing data conveyed by the report and a reports engine for generating a second report conveying the location of said container when the report is generated.


A Global Navigation Satellite System (GNSS) chipset embedded within the cellular device is accessed. The GNSS chipset calculates raw pseudoranges. The raw pseudoranges are extracted from the GNSS chipset for processing elsewhere in the cellular device outside of the GNSS chipset. A position fix is calculated based on the raw pseudoranges. At a first point in time, a first image, and at a second point in time, a second image are obtained with an image capturing device that is in a known physical relationship with the cellular device. An estimate of a distance that the cellular device moved from the first point in time to the second point in time is calculated by processing image data collected from the first point in time to the second point in time. The position fix is processed based on the estimate of the distance.


The invention relates to generating regional tropospheric correction information for correcting observations useful for estimating phase ambiguities and/or a position of global or regional navigation satellite systems (NSS) receiver(s). For each of a plurality of reference stations, at least one troposphere correction parameter is estimated (s30) by evaluating NSS observation equations using i) precise satellite information or the information derived from the precise satellite information, and ii) received multiple-frequency-signals-based raw observations or a linear combination thereof. The regional tropospheric correction information is then generated (s40) based on the estimated troposphere correction parameter(s) per reference station, the tropospheric correction information comprising a regional tropospheric delay function(s) and coefficients representing a tropospheric delay affecting a NSS signal passing through the troposphere in a region of interest. The generated tropospheric correction information may then be sent (s50) to NSS receiver(s) and used by the receiver(s) for example to facilitate position determination.


Patent
Trimble | Date: 2017-04-05

A transmit light signal is emitted toward a target at an emission time. An optical subsystem of a receiving system receives a return light signal which is converted to a return electrical signal. At least one attenuator applies an attenuation to at least one of the return light signal and the return electrical signal. The attenuation varies, as time passes, after emission of the transmit light signal, according to a time -dependent attenuation function such that the attenuation is maximum at a critical time elapsed since an emission time of the transmit light signal. The critical time is dependent on at least one geometrical parameter of the optical subsystem. A receive time is determined from the return electrical signal. The emission time and the receive time are used to calculate a measured distance.


Patent
Trimble | Date: 2017-06-07

A method for updating a building information model with crane operations data is disclosed. The method includes: accessing data associated with operations of a crane, wherein the data relates to an object being moved by the crane; based on accessed data, generating timeline information, wherein the timeline information relates to the operations of the crane, the operations associated with a construction project; and automatically sending generated timeline information to the building information model.


Patent
Trimble | Date: 2017-04-05

Efficient towed implement guidance to a desired path is achieved by guiding a towing vehicle toward a path on the opposite side of a desired path, then guiding the vehicle back to the desired path. Efficient forward implement guidance to a desired path is achieved by guiding a pushing vehicle along a tractrix. A vehicle leaves a straight line along a tractrix to keep a rear implement on the line as long as possible.


A stand-alone radio frequency (RF) hardware component comprises first and second antennas, a digitizer, a serializer, and a serial output. The first antenna receives, over-the- air, a first analog Global Navigation Satellite System (GNSS) signal in a first frequency band. The second antenna receives, over-the-air, at least a second analog GNSS signal in a second frequency band, wherein the first frequency band and the second frequency band are separate and distinct. The digitizer digitizes the first analog GNSS signal into a first digitalized GNSS signal and digitizes the second analog GNSS signal into a second digitized GNSS signal. The serializer serializes the digitized GNSS signals into a serialized output signal. The serial output communicatively couples the digitized GNSS signals, as the serialized output signal, directly from the RF hardware component to a communication device that is removably couplable with the stand-alone RF hardware component.


A vehicle-based radio frequency hardware component comprises first and second antennas, a digitizer, a serializer, and a serial output. The first antenna receives, over-the-air, a first analog Global Navigation Satellite System (GNSS) signal in a first frequency band. The second antenna receives, over-the-air, at least a second analog GNSS signal in a second frequency band. The first frequency band and the second frequency band are separate and distinct. The digitizer digitizes the first analog GNSS signal into a first digitalized GNSS signal and the second analog GNSS signal into a second digitized GNSS signal. The serializer serializes the digitized GNSS signals into a serialized output signal. The serial output communicatively couples the digitized GNSS signals, as the serialized output signal, directly from a location in a vehicle of the radio frequency hardware component to a separate communication device also coupled with the vehicle.


The present disclosure relates to a measuring instrument (100) and a method (3000) implemented in such a measuring instrument. The measuring instrument includes an image sensor (110), an actuator (120), a control unit (130) and a processor (140). The actuator is arranged to move a field of view (150) of the image sensor. The control unit is configured to cause the image sensor to capture at least one digital image during motion of the field of view of the image sensor by the actuator. The exposure time for capturing the digital image is longer than an identifiable section of a regulating pattern for modulation of an optical radiation either emitted or reflected by at least one target. The processor is configured to process at least a portion of the captured image for detecting in the at least one portion the identifiable section of the regulating pattern. Such a measuring instrument is advantageous for detecting and/or identifying a target in the vicinity of the instrument.


The present disclosure relates to a measuring instrument and a method implemented in such a measuring instrument. The measuring instrument includes an image sensor, an actuator, a control unit and a processor. The actuator is arranged to move a field of view of the image sensor. The control unit is configured to cause the image sensor to capture at least one digital image during motion of the field of view of the image sensor by the actuator. The exposure time for capturing the digital image is longer than an identifiable section of a regulating pattern for modulation of an optical radiation either emitted or reflected by at least one target. The processor is configured to process at least a portion of the captured image for detecting in the at least one portion the identifiable section of the regulating pattern. Such a measuring instrument is advantageous for detecting and/or identifying a target in the vicinity of the instrument.

Loading Trimble collaborators
Loading Trimble collaborators