Sunnyvale, CA, United States
Sunnyvale, CA, United States

Time filter

Source Type

The invention relates to generating regional tropospheric correction information for correcting observations useful for estimating phase ambiguities and/or a position of global or regional navigation satellite systems (NSS) receiver(s). For each of a plurality of reference stations, at least one troposphere correction parameter is estimated by evaluating NSS observation equations using i) precise satellite information or the information derived from the precise satellite information, and ii) received multiple-frequency-signals-based raw observations or a linear combination thereof. The regional tropospheric correction information is then generated based on the estimated troposphere correction parameter(s) per reference station, the tropospheric correction information comprising a regional tropospheric delay function(s) and coefficients representing a tropospheric delay affecting a NSS signal passing through the troposphere in a region of interest. The generated tropospheric correction information may then be sent to NSS receiver(s) and used by the receiver(s) for example to facilitate position determination.


Embodiments provide for a geodetic instrument comprising a scanning head, a reflecting optical element, a radiation source, a control unit and an electronic distance measurement (EDM) unit. The scanning head is rotatable about a first axis. The reflecting optical element mounted in the scanning head and rotatable about the same first axis. The radiation source is adapted to emit light to be output along a light beam path from the geodetic instrument via light reflection against the reflecting optical element. The control unit is adapted to adjust an angular displacement profile of the reflecting optical element about the first axis relative to an angular displacement profile of the scanning head such that an angular displacement of the light beam path about the first axis as a function of time presents a stair-like profile. The EDM unit is adapted to determine a distance to a target during a flat portion of the stair-like profile.


Patent
Trimble | Date: 2016-08-03

Methods and systems for inspection, safety assurance, tracking, and/or as-built comparison use an imaging tool to acquire imaging data of a scene. The imaging data is processed to create a three-dimensional representation of the scene. Radio frequency (RF) data is received from an RF tag using an RF reader. The RF tag is associated with an object within the scene. The object in the three-dimensional representation of the scene is identified based on the RF data and compared to a model of the object.


The invention relates to generating regional tropospheric correction information for correcting observations useful for estimating phase ambiguities and/or a position of global or regional navigation satellite systems (NSS) receiver(s). For each of a plurality of reference stations, at least one troposphere correction parameter is estimated (s30) by evaluating NSS observation equations using i) precise satellite information or the information derived from the precise satellite information, and ii) received multiple-frequency-signals-based raw observations or a linear combination thereof. The regional tropospheric correction information is then generated (s40) based on the estimated troposphere correction parameter(s) per reference station, the tropospheric correction information comprising a regional tropospheric delay function(s) and coefficients representing a tropospheric delay affecting a NSS signal passing through the troposphere in a region of interest. The generated tropospheric correction information may then be sent (s50) to NSS receiver(s) and used by the receiver(s) for example to facilitate position determination.


A Global Navigation Satellite System (GNSS) chipset embedded within the cellular device is accessed. The GNSS chipset calculates raw pseudoranges. The raw pseudoranges are extracted from the GNSS chipset for processing elsewhere in the cellular device outside of the GNSS chipset. A position fix is calculated based on the raw pseudoranges. At a first point in time, a first image, and at a second point in time, a second image are obtained with an image capturing device that is in a known physical relationship with the cellular device. An estimate of a distance that the cellular device moved from the first point in time to the second point in time is calculated by processing image data collected from the first point in time to the second point in time. The position fix is processed based on the estimate of the distance.


The invention relates to generating correction information to be used to correct observations coming from a navigation satellite system (NSS) receiver in a region of interest. For each of a plurality of reference stations in said region, raw observations obtained by the reference station observing NSS multiple-frequency signals from a plurality of satellites over multiple epochs are received. Then, precise satellite information on the orbit position, clock offset, and biases of each satellite is obtained. For each reference station, ambiguities in the carrier phase of the received raw observations are estimated, using the precise satellite information and the position coordinates of the reference station. Geometric-free phase linear combination values are then computed based on the received raw observations together with the estimated ambiguities. The correction information is generated based on the computed geometric-free phase linear combination values. The correction information comprises, for each NSS satellite, a regional ionospheric delay function and its coefficients, those representing, per NSS satellite, the ionospheric delay in said region. The correction information is sent, for example to facilitate position determination, to the NSS receiver or to a server in charge of processing observations from the NSS receiver.


Patent
Trimble | Date: 2016-01-13

A surveillance system for determining a time sequence of remote station parameters in association with each of a plurality of remote stations of a surveillance system obtained a time sequence of epochs of distance observations at each of the plurality of remote stations and forms a combined real time processing of the epochs to determine a time sequence of remote station parameters in association with each of the plurality of remote stations. Upon an interruption of a first communication link between a first remote station and the central station epochs of distance observations for each of remaining remote stations are intermediately stored at the central station during the interruption of the first communication link. After reestablishment of the failed communication link the first remote station supplies the epochs of distance observations that were not submitted due to the failure of the communication link and the central station performs a combined recapture processing of the received epochs of distance observations from the first remote station and the intermediately stored epochs of distance observations from the remaining remote stations after reestablishment of the first communication link, to determine history remote station parameters in association with each of the remote stations during the interruption of the first communication link.


Patent
Trimble | Date: 2016-05-18

A measurement instrument is disclosed. The measurement instrument (500) comprises a distance measurement module (505), a splitter (525) and a deflection module (515). The distance measurement module is configured to transmit optical radiation along a transmit path (501) and receive optical radiation along a receive path (502). The transmit path and the receive path are merged in a measurement beam (503) at the splitter. The deflection module is located optically between the distance measurement module and the splitter. The deflection module is configured to aim the transmit path and the receive path at the splitter and to deflect at least one of the transmit path and the receive path across an instrument optical axis (510).


Patent
Trimble | Date: 2016-04-05

A method for tracking an entity is disclosed. In one embodiment, a plurality of messages conveying an identification of an entity are received using a wireless identification component. A geographic location of the wireless identification component is determined by a position determining component wherein the geographic location describes a respective geographic location of the wireless identification component when each of the plurality of messages is received. A geographic position of the entity is determined based upon a known spatial relationship between the position determining component and the wireless identification component.


Patent
Trimble | Date: 2016-09-21

A transmit light signal is emitted toward a target at an emission time. An optical subsystem of a receiving system receives a return light signal which is converted to a return electrical signal. At least one attenuator applies an attenuation to at least one of the return light signal and the return electrical signal. The attenuation varies, as time passes, after emission of the transmit light signal, according to a time-dependent attenuation function such that the attenuation is maximum at a critical time elapsed since an emission time of the transmit light signal. The critical time is dependent on at least one geometrical parameter of the optical subsystem. A receive time is determined from the return electrical signal. The emission time and the receive time are used to calculate a measured distance.

Loading Trimble collaborators
Loading Trimble collaborators