Entity

Time filter

Source Type

Ashland, KY, United States

Gossman M.S.,Tri State Regional Cancer Center | Gossman M.S.,Regulation Directive Medical Physics LLC | Ketkar A.,Cyberonics | Liu A.K.,Aurora University | Olin B.,Cyberonics
Physics in Medicine and Biology | Year: 2012

Five different models of Cyberonics, Inc. vagus nerve stimulation (VNS) therapy pulse generators were investigated for their stability under radiation and their ability to change the absorbed dose from incident radiation. X-ray beams of 6 MV and 18 MV were used to quantify these results up to clinical doses of 68-78 Gy delivered in a single fraction. In the first part, the effect on electronic stimulation signaling of each pulse generator was monitored during and immediately afterwards with computer interrogation. In the second part, the effects of having the pulse generators scatter or attenuate the x-ray beam was also characterized from dose calculations on a treatment planning system as well as from actual radiation measurements. Some device models were found to be susceptible to radiation interference when placed directly in the beam of high energy therapeutic x-ray radiation. While some models exhibited no effect at all, others showed an apparent loss of stimulation output immediately after radiation was experienced. Still, other models were observed to have a cumulative dose effect with a reduced output signal, followed by battery depletion above 49Gy. Absorbed dose changes on computer underestimated attenuation by nearly half for both energies amongst all pulse generators, although the computer did depict the proper shape of the changed distribution of dose around the device. Measured attenuation ranged from 7.0% to 11.0% at 6 MV and 4.2% to 5.2% at 18 MV for x-rays. Processes of back-scatter and side-scatter were deemed negligible although recorded. Identical results from 6 MV and 18 MV x-ray beams conclude no neutron effect was induced for the 18 MV beam. As there were documented effects identified in this research regarding pulse generation, it emphasizes the importance of caution when considering radiation therapy on patients with implanted VNS devices with observed malfunctions consequential. © 2012 Institute of Physics and Engineering in Medicine. Source


Gossman M.S.,Tri State Regional Cancer Center | Treaba C.G.,Denver Research and Technology Labs | Kirk J.R.,Denver Research and Technology Labs
Otology and Neurotology | Year: 2011

Hypothesis: Processes of scattering and attenuation were investigated to determine the consequence on dose distributions by having a cochlear implant in the field of therapeutic radiation. Background: Radiation oncology medical accelerator beams of 6- and 18-MV x-ray energy were used. Five cochlear implants were investigated. Methods: Each implant model was individually studied using computer dose modeling and through exercises in radiation measurement during live delivery. Results: No side scatter was detected, and negligible backscattering was observed for the primary device housing and electrodes. Attenuation consequences were found to be dependent on the model of cochlear implant studied and specifically dependent on the material composition of each device. Conclusion: The maximum attenuated dose change for the study was found to be -8.8% for 6 MV and -6.6% for 18 MV. This study presents the first comparison of therapeutic radiation delivery versus computerized treatment simulation involving cochlear implants. Copyright © 2011 Otology & Neurotology, Inc. Unauthorized reproduction of this article is prohibited. Source


Gossman M.S.,Tri State Regional Cancer Center
Journal of applied clinical medical physics / American College of Medical Physics | Year: 2010

Recent improvements to the functionality and stability of implantable pacemakers and cardioverter-defibrillators involve changes that include efficient battery power consumption and radiation hardened electrical circuits. Manufacturers have also pursued MRI-compatibility for these devices. While such newer models of pacemakers and cardioverter-defibrillators are similar in construction to previously marketed devices - even for the recent MRI-compatible designs currently in clinical trials - there is increased interest now with regard to radiation therapy dose effects when a device is near or directly in the field of radiation. Specifically, the limitation on dose to the device from therapeutic radiation beams is being investigated for a possible elevation in limiting dose above 200 cGy. We present here the first-ever study that evaluates dosimetric effects from implantable pacemakers and implantable cardioverter-defibrillators in high energy X-ray beams from a medical accelerator. Treatment plan simulations were analyzed for four different pacemakers and five different implantable cardioverter-defibrillators and intercompared with direct measurements from a miniature ionization chamber in water. All defibrillators exhibited the same results and all pacemakers were seen to display the same consequences, within only a +/- 1.8% deviation for all X-ray energies studied. Attenuation, backscatter, and lateral scatter were determined to be -13.4%, 2.1% and 1.5% at 6 MV, and -6.1%, 3.1% and 5.1% at 18 MV for the defibrillator group. For the pacemaker group, this research showed results of -15.9%, 2.8% and 2.5% at 6 MV, and -9.4%, 3.4% and 5.7% at 18 MV, respectively. Limited results were discovered from scattering processes through computer modeling. Strong verification from measurements was concluded with respect to simulating attenuation characteristics. For IP and ICD leads, measured dose changes were less than 4%, existing as attenuation processes only, and invariant with regard to X-ray energy. Source


Gossman M.S.,Tri State Regional Cancer Center | Rising M.B.,University of Louisville
Journal of Applied Clinical Medical Physics | Year: 2010

We detail, derive and correct the technical use of the solid angle variable identified in formal guidance that relates skyshine calculations to dose-equivalent rate. We further recommend it for use with all National Council on Radiation Protection and Measurements (NCRP), Institute of Physics and Engineering in Medicine (IPEM) and similar reports documented. In general, for beams of identical width which have different resulting areas, within ± 1.0 % maximum deviation the analytical pyramidal solution is 1.27 times greater than a misapplied analytical conical solution through all field sizes up to 40 × 40 cm2. Therefore, we recommend determining the exact results with the analytical pyramidal solution for square beams and the analytical conical solution for circular beams. Source


Gossman M.S.,Tri State Regional Cancer Center | Rising M.B.,University of Louisville
Journal of Applied Clinical Medical Physics | Year: 2010

This study assesses the dose level from skyshine produced by a 6 MeV medical accelerator. The analysis of data collected on skyshine yields professional guidance for future investigators as they attempt to quantify and qualify radiation protection concerns in shielding therapy vaults. Survey measurements using various field sizes and at varying distances from a primary barrier have enabled us to identify unique skyshine behavior in comparison to other energies already seen in literature. In order to correctly quantify such measurements outside a shielded barrier, one must take into consideration the fact that a skyshine maximum may not be observed at the same distance for all field sizes. A physical attribute of the skyshine scatter component was shown to increase to a maximum value at 4.6 m from the barrier for the largest field size used. We recommend that the largest field sizes be used in the field for the determination of skyshine effect and that the peak value be further analyzed specifically when considering shielding designs. Source

Discover hidden collaborations