Lexington, KY, United States

Time filter

Source Type

Patent
Transposagen Biopharmaceuticals, Inc. | Date: 2014-09-30

This invention relates to the engineering of animal cells, preferably mammalian, more preferably rat, that are deficient due to the disruption of gene(s) or gene product(s) resulting in altered nervous system function. In one aspect, the altered function results in pain in the mammal. In another aspect, the nervous system dysfunction results in prolonged hyperalgesia, allodynia, and loss of sensory function. In another aspect, the invention relates to genetically modified rats, as well as the descendants and ancestors of such animals, which are animal models of altered nervous system function mediated pain and methods of their use. In another aspect, the genetically modified rats, as well as the descendants and ancestors of such animals, are animal models of nervous system dysfunction resulting in prolonged hyperalgesia, allodynia, and loss of sensory function and methods of their use. In another aspect, the present invention provides a method of identifying a compound useful for the treatment or prevention of pain.


Patent
Transposagen Biopharmaceuticals, Inc. | Date: 2016-03-15

This invention relates to the engineering of animal cells, preferably mammalian, more preferably rat, that are deficient due to the disruption of tumor suppressor gene(s) or gene product(s). In another aspect, the invention relates to genetically modified rats, as well as the descendants and ancestors of such animals, which are animal models of human cancer and methods of their use.


Grant
Agency: Department of Health and Human Services | Branch: | Program: SBIR | Phase: Phase I | Award Amount: 225.00K | Year: 2014

DESCRIPTION (provided by applicant): While it has been demonstrated that gene mutations are associated with an increasing number of neurodegenerative syndromes, environmental neurotoxicants remain a key factor in the etiology of many such diseases. For example, exposure to pesticides such as maneb and paraquat increase the risk of developing Parkinson's disease. Unfortunately, there is no optimal in vitro model system to assess the neurotoxic potential of compounds. As result, exposure to poorly characterized compounds represents a significant contributor to the development of environmentally-induced diseases. There is a compelling unmet need for in vitro models and endpoint assays that are cost-effective, accurate, predictive, and sensitive that would alsobe amenable to high throughput screening. In particular, there is a need to develop homogeneous in vitro screens that can be used in quantitative high-throughput screening to query large libraries of chemical compounds such as the 'Tox21 10K' chemical


Patent
Transposagen Biopharmaceuticals, Inc. | Date: 2015-12-28

This invention relates to the engineering of animal cells, preferably mammalian, more preferably rat, that are deficient due to the disruption of gene(s) or gene product(s) resulting in altered nervous system function. In one aspect, the altered function results in pain in the mammal. In another aspect, the nervous system dysfunction results in prolonged hyperalgesia, allodynia, and loss of sensory function. In another aspect, the invention relates to genetically modified rats, as well as the descendants and ancestors of such animals, which are animal models of altered nervous system function mediated pain and methods of their use. In another aspect, the genetically modified rats, as well as the descendants and ancestors of such animals, are animal models of nervous system dysfunction resulting in prolonged hyperalgesia, allodynia, and loss of sensory function and methods of their use. In another aspect, the present invention provides a method of identifying a compound useful for the treatment or prevention of pain.


Patent
Transposagen Biopharmaceuticals, Inc. | Date: 2016-02-10

The present invention provides a desired rat or a rat cell which contains a predefined, specific and desired alteration rendering the rat or rat cell predisposed to alterations in drug and chemical metabolism by modification of its structure or mechanism. Specifically, the invention pertains to a genetically altered rat, or a rat cell in culture, that is defective in at least one of two alleles of a drug metabolism gene such as the Cyp7b1 gene, the Cyp3a4 gene, etc. In another embodiment, the rat cell is a somatic cell. The inactivation of at least one drug metabolism allele results in an animal with a higher susceptibility to altered drug and chemical metabolism. In one embodiment, the genetically altered animal is a rat of this type and is able to serve as a useful model for altered drug and chemical metabolism or toxicology and as a test animal for autoimmune and other studies. The invention additionally pertains to the use of such rats or rat cells, and their progeny in research and medicine. In one embodiment, the invention provides a genetically modified or chimeric rat cell whose genome comprises two chromosomal alleles of a drug metabolism gene wherein at least one of the two alleles contains a mutation, or the progeny of the cell.


Patent
Transposagen Biopharmaceuticals, Inc. | Date: 2015-12-28

The present invention provides a desired rat or a rat cell which contains a predefined, specific and desired alteration rendering the rat or rat cell predisposed to drug transport sensitivity or resistance drug transport resistance or sensitivity. Specifically, the invention pertains to a genetically altered rat, or a rat cell in culture, that is defective in at least one of two alleles of a drug transporter gene such as the Slc7a11 (NC_005101.2) gene, the Abcb1 (NC_005103.2) gene, etc. The present invention also provides a desired rat or a rat cell which contains a predefined, specific and desired alteration rendering the rat or rat cell predisposed to drug transport sensitivity or resistance drug transport resistance or sensitivity. Specifically, the invention pertains to a genetically altered rat, or a rat cell in culture, that is defective in at least one of two alleles of a drug transporter gene.


Patent
Transposagen Biopharmaceuticals, Inc. | Date: 2014-06-13

The instant application discloses methods of treating, reducing, or preventing pain in a mammal, which may include administering a compound capable of modulating a transient receptor potential channel. In one aspect, the TRP channel may be TRPC4. Types of pain contemplated by the present disclosure include acute, chronic, neuropathic, and nociceptive pain.


The present invention provides a method of direct germline mutagenesis of a non-human animal.


Patent
Transposagen Biopharmaceuticals, Inc. | Date: 2013-02-22

The present invention provides PiggyBac transposase proteins, nucleic acids encoding the same, compositions comprising the same, kits comprising the same, non-human transgenic animals comprising the same, and methods of using the same.


Patent
Transposagen Biopharmaceuticals, Inc. | Date: 2013-11-18

The present invention provides polypeptides related to Ralstonia proteins, nucleic acids encoding the same, compositions comprising the same, kits comprising the same, non-human transgenic animals comprising the same, and methods of using the same.

Loading Transposagen Biopharmaceuticals, Inc. collaborators
Loading Transposagen Biopharmaceuticals, Inc. collaborators