Time filter

Source Type

Duarte, CA, United States

Manuel E.R.,Translational Vaccine Research | Blache C.A.,Translational Vaccine Research | Paquette R.,Translational Vaccine Research | Kaltcheva T.I.,Translational Vaccine Research | And 5 more authors.
Cancer Research | Year: 2011

Cancer vaccine therapies have only achieved limited success when focusing on effector immunity with the goal of eliciting robust tumor-specific T-cell responses. More recently, there is an emerging understanding that effective immunity can only be achieved by coordinate disruption of tumor-derived immunosuppression. Toward that goal, we have developed a potent Salmonella-based vaccine expressing codon-optimized survivin (CO-SVN), referred to as 3342Max. When used alone as a therapeutic vaccine, 3342Max can attenuate growth of aggressive murine melanomas overexpressing SVN. However, under more immunosuppressive conditions, such as those associated with larger tumor volumes, we found that the vaccine was ineffective. Vaccine efficacy could be rescued if tumor-bearing mice were treated initially with Salmonella encoding a short hairpin RNA (shRNA) targeting the tolerogenic molecule STAT3 (YS1646-shSTAT3). In vaccinated mice, silencing STAT3 increased the proliferation and granzyme B levels of intratumoral CD4+ and CD8 + T cells. The combined strategy also increased apoptosis in tumors of treated mice, enhancing tumor-specific killing of tumor targets. Interestingly, mice treated with YS1646-shSTAT3 or 3342Max alone were similarly unsuccessful in rejecting established tumors, whereas the combined regimen was highly potent. Our findings establish that a combined strategy of silencing immunosuppressive molecules followed by vaccination can act synergistically to attenuate tumor growth, and they offer a novel translational direction to improve tumor immunotherapy. ©2011 AACR. Source

Ishizaki H.,City of Hope National Medical Center | Song G.-Y.,City of Hope National Medical Center | Srivastava T.,Translational Vaccine Research | Carroll K.D.,Advaxis | And 4 more authors.
Journal of Immunotherapy | Year: 2010

The p53 gene product is overexpressed in ∼50% of cancers, making it an ideal target for cancer immunotherapy. We previously demonstrated that a modified vaccinia Ankara (MVA) vaccine expressing human p53 (MVA-p53) was moderately active when given as a homologous prime/boost in a human p53 knock in (Hupki) mouse model. We needed to improve upon the inefficient homologous boosting approach, because development of neutralizing immunity to the vaccine viral vector backbone suppresses its immunogenicity. To enhance specificity, we examined the combination of 2 different vaccine vectors provided in sequence as a heterologous prime/boost. Hupki mice were evaluated as a human p53 tolerant model to explore the capacity of heterologous p53 immunization to reject human p53-expressing tumors. We employed attenuated recombinant Listeria monocytogenes expressing human p53 (LmddA-LLO-p53) in addition to MVA-p53. Heterologous p53 immunization resulted in a significant increase in p53-specific CD8 + and CD4 + T cells compared with homologous single vector p53 immunization. Heterologous p53 immunization induced protection against tumor growth but had only a modest effect on established tumors. To enhance the immune response we used synthetic double-strand RNA (polyinsosinic:polycytidylic acid) and unmethylated CpG-containing oligodeoxynucleotide to activate the innate immune system via Toll-like receptors. Treatment of established tumor-bearing Hupki mice with polyinsosinic:polycytidylic acid and CpG-oligodeoxynucleotide in combination with heterologous p53 immunization resulted in enhanced tumor rejection relative to treatment with either agent alone. These results suggest that heterologous prime/boost immunization and Toll-like receptor stimulation increases the efficacy of a cancer vaccine, targeting a tolerized tumor antigen. Copyright © 2010 by Lippincott Williams & Wilkins. Source

Discover hidden collaborations