Entity

Time filter

Source Type

Memphis, TN, United States

Wang X.,Translational Sciences, Inc.
Current Molecular Pharmacology | Year: 2012

PPARγ-modulators, a class of anti-diabetic drugs as represented by thiazolidinediones (TZD), have been associated with cardiovascular risks in type-2 diabetes in humans but a similar liability has not been demonstrated in preclinical models. This gap between clinical and preclinical observations may reflect the lack of a translational model for cardiac safety assessment because preclinical efficacy for glycemic control for PPARγ-modulators is routinely conducted in animals with diabetic background while drug safety study is performed in young and health animals with little risk of heart failure, in contrast to the complex pathophysiological conditions of patients subjected to the treatment of TZDs. Therefore, some key steps are important to address this translational gap. First, it is essential to use an appropriate translational model that mimics most of human pathophysiology for the assessment of cardiovascular safety for TZDs. Second, it calls for the discovery of a translational biomarker (most likely a collection of biomarkers due to multiple risk factors contributed to the complex disease) to be able to sensitively detect the disease progression and in response to therapy. Specific examples are provided in this review for the use of a rodent model of myocardial infarction-induced heart failure to address the cardiac safety concern in response to chronic treatment of rosiglitazone. Multiple biomarkers, including physiological, biochemical, pharmacogenomic and imaging biomarkers, were applied to assess the cardiovascular risk in this heart failure model. The data and strategic approach are discussed from translational medicine perspectives. © 2012 Bentham Science Publishers. Source


Trzasko A.,Novartis | Leeds J.A.,Novartis | Praestgaard J.,Translational Sciences, Inc. | LaMarche M.J.,Global Discovery Chemistry | McKenney D.,Novartis
Antimicrobial Agents and Chemotherapy | Year: 2012

LFF571 is a novel semisynthetic thiopeptide antibiotic with potent activity against a variety of Gram-positive pathogens, including Clostridium difficile. In vivo efficacy of LFF571 was compared to vancomycin in a hamster model of C. difficile infection (CDI). Infection was induced in Golden Syrian hamsters using a toxigenic strain of C. difficile. Treatment started 24 h postinfection and consisted of saline, vancomycin, or LFF571. Cox regression was used to analyze survival data from a cohort of animals evaluated across seven serial experimental groups treated with vancomycin at 20 mg/kg, LFF571 at 5 mg/kg, or vehicle alone. Survival was right censored; animals were not observed beyond day 21. At death or end of study, cecal contents were tested for C. difficile toxins A and B. In summary, the data showed that 5 mg/kg LFF571 decreased the risk of death by 79% (P < 0.0001) and 69% (P = 0.0022) compared with saline and 20 mg/kg vancomycin, respectively. Further analysis of the pooled data indicated that the survival benefit of LFF571 treatment at 5 mg/kg compared to vancomycin at 20 mg/kg was due primarily to a decrease in the risk of recurrence after end of treatment. Animals successfully treated with LFF571 or vancomycin had no detectable C. difficile toxin. Overall, LFF571 was more efficacious at the end of the study, at a lower dose, and with fewer recurrences, than vancomycin in the hamster model of CDI. LFF571 is being assessed in humans for safety and efficacy in the treatment of C. difficile infections. Copyright © 2012, American Society for Microbiology. All Rights Reserved. Source


Stang P.E.,Johnson and Johnson | Ryan P.B.,U.S. National Institutes of Health | Racoosin J.A.,U.S. Food and Drug Administration | Overhage J.M.,Translational Sciences, Inc. | And 5 more authors.
Annals of Internal Medicine | Year: 2010

The U.S. Food and Drug Administration (FDA) Amendments Act of 2007 mandated that the FDA develop a system for using automated health care data to identify risks of marketed drugs and other medical products. The Observational Medical Outcomes Partnership is a public-private partnership among the FDA, academia, data owners, and the pharmaceutical industry that is responding to the need to advance the science of active medical product safety surveillance by using existing observational databases. The Observational Medical Outcomes Partnership's transparent, open innovation approach is designed to systematically and empirically study critical governance, data resource, and methodological issues and their interrelationships in establishing a viable national program of active drug safety surveillance by using observational data. This article describes the governance structure, data-access model, methods-testing approach, and technology development of this effort, as well as the work that has been initiated. © 2010 American College of Physicians. Source


Grant
Agency: Department of Health and Human Services | Branch: | Program: SBIR | Phase: Phase I | Award Amount: 300.00K | Year: 2011

DESCRIPTION (provided by applicant): Stroke is the 3rd leading cause of death and the primary cause of severe, long term disability. Each year 795,000 Americans have a stroke and the annual costs to the economy are 57.9 billion. The vast majority of acute ischemic strokes are caused by a thrombus (blood clot) which occludes the blood vessel and stops blood flow to the brain. Tissue plasminogen activator (TPA), an agent that catalyzes the dissolution of blood clots, is the only effective, FDA-approved treatment for ischemic stroke. Unfortunately, TPA is associated with significant risks, delays in treatment, and is unsuccessful in up to 70% of patients at dissolving blood clots in sufficient time to protect the brain. There is a need for a safer, more effective therapy that facilitates early treatment, saves lives, reduces disability and lowers health care costs. In pre-clinical studies, we have shown that these goals might be achieved by a molecule that inactivates the major inhibitor of plasmin and, dissolves clots through a unique mechanism that avoids the risk of hemorrhage and neurotoxicity associated with TPA therapy. Following FDA guidance, we converted this molecule into a biologic drug candidate for stroke (stromab) that potently accelerates the dissolution of human clots. The goal of this Fast Track application is to move stromab further towards human trials by following FDA guidance to: 1) determine the optimal formulation and therapeutic time window for treatment, 2) produce and purify stromab under GLP conditions, 3) investigate the safety, pharmacokinetics and pharmacodynamics of stromab and, 4) submit an IND to the FDA. PUBLIC HEALTH RELEVANCE: Each year 795,000 Americans have a stroke and the annual costs to the economy are 57.9 billion. Tissue plasminogen activator, the only approved treatment for ischemic stroke, is associated with significant risks, delays in treatment, and is unsuccessful in up to 70% of patients at dissolving blood clots in sufficient time to protect the brain. Thisproject seeks to develop a novel therapy for stroke that could markedly reduce death, disability and costs.


Patent
Translational Sciences, Inc. | Date: 2014-03-06

Compositions and methods of using SerpinF2-binding molecules for preventing and/or reducing organ damage, functional disability or mortality in a patient at risk due to the activity of SerpinF2 and/or plasminogen activators on tissue injury. Also provided are compositions and methods of using SerpinF2-binding molecules for inhibiting hemorrhage, edema, and apoptosis. Methods for the preparation of medicaments for such methods of treatment and prevention are provided.

Discover hidden collaborations