Time filter

Source Type

Villanueva A.,HCC Translational Research Laboratory | Villanueva A.,Charles III University of Madrid
Journal of Hepatology | Year: 2013

Summary The high failure rate of phase 3 trials in oncology is forcing the scientific community to rethink drug development strategies and optimize trial design. The current paradigm of systemic therapies is progressively favoring molecular-based patient selection. In hepatocellular carcinoma, four out of the five phase 3 trials that tested molecular therapies in the last 5 years have been negative. None of them included enriched populations using predicted biomarkers of response. Hence, there is an increasing need to provide new targets and refine selection criteria in HCC clinical trials using molecular readouts of tumor biology. © 2013 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

Zender L.,Helmholtz Center for Infection Research | Zender L.,Hannover Medical School | Villanueva A.,HCC Translational Research Laboratory | Tovar V.,HCC Translational Research Laboratory | And 5 more authors.
Journal of Hepatology | Year: 2010

Hepatocellular carcinoma (HCC) is a deadly cancer, whose incidence is increasing worldwide. Albeit the main risk factors for HCC development have been clearly identified, such as hepatitis B and C virus infection and alcohol abuse, there is still preliminary understanding of the key drivers of this malignancy. Recent data suggest that genomic analysis of cirrhotic tissue - the pre-neoplastic carcinogenic field - may provide a read-out to identify at risk populations for cancer development. Given this contextual complexity, it is of utmost importance to characterize the molecular pathogenesis of this disease, and pinpoint the dominant pathways/drivers by integrative oncogenomic approaches and/or sophisticated experimental models. Identification of the dominant proliferative signals and key aberrations will allow for a more personalized therapy. Pathway-based approaches and functional experimental studies have aided in identifying the activation of different signaling cascades in HCC (e.g. epidermal growth factor, insulin-like growth factor, RAS, MTOR, WNT-βcatenin, etc.). However, the introduction of new high-throughput genomic technologies (e.g. microarrays, deep sequencing, etc.), and increased sophistication of computational biology (e.g. bioinformatics, biomodeling, etc.), opens the field to new strategies in oncogene and tumor suppressor discovery. These oncogenomic approaches are framed within emerging new disciplines such as systems biology, which integrates multiple inputs to explain cancer onset and progression. In addition, the consolidation of sophisticated animal models, such as mosaic cancer mouse models or the use of transposons for mutagenesis screens, have been instrumental for the identification of novel tumor drivers. We herein review some classical as well as some recent fast track approaches for oncogene discovery in HCC, and provide a comprehensive landscape of the currently known spectrum of molecular aberrations involved in hepatocarcinogenesis. © 2010 European Association for the Study of the Liver.

Sia D.,HCC Translational Research Laboratory | Sia D.,Italian National Cancer Institute | Tovar V.,HCC Translational Research Laboratory | Moeini A.,HCC Translational Research Laboratory | And 4 more authors.
Oncogene | Year: 2013

Intrahepatic cholangiocarcinoma (ICC) is an aggressive malignancy with very poor prognosis. Genome-wide, high-throughput technologies have made major advances in understanding the molecular basis of this disease, although important mechanisms are still unclear. Recent data have revealed specific genetic mutations (for example, KRAS, IDH1 and IDH2), epigenetic silencing, aberrant signaling pathway activation (for example, interleukin (IL)-6/signal transducer and activator of transcription 3 (STAT3), tyrosine kinase receptor-related pathways) and molecular subclasses with unique alterations (for example, proliferation and inflammation subclasses). In addition, some ICCs share common genomic traits with hepatocellular carcinoma. All this information provides the basis to explore novel targeted therapies. Currently, surgery at early stage is the only effective therapy. At more advanced stages, chemotherapy regimens are emerging (that is, cisplatin plus gemcitabine), along with molecular targeted agents tested in several ongoing clinical trials. Nonetheless, a first-line conclusive treatment remains an unmet need. Similarly, there are no studies assessing tumor response related with genetic alterations. This review explores the recent advancements in the knowledge of the molecular alterations underlying ICC and the future prospects in terms of therapeutic strategies leading towards a more personalized treatment of this neoplasm. © 2013 Macmillan Publishers Limited All rights reserved.

Keng V.W.,Masonic Cancer Center | Keng V.W.,BCLC Group Liver Unit | Keng V.W.,University of Minnesota | Keng V.W.,Hong Kong Polytechnic University | And 30 more authors.
Hepatology | Year: 2013

Hepatocellular carcinoma (HCC) is one of the deadliest solid cancers and is the third leading cause of cancer-related death. There is a universal estimated male/female ratio of 2.5, but the reason for this is not well understood. The Sleeping Beauty (SB) transposon system was used to elucidate candidate oncogenic drivers of HCC in a forward genetics screening approach. Sex bias occurrence was conserved in our model, with male experimental mice developing liver tumors at reduced latency and higher tumor penetrance. In parallel, we explored sex differences regarding genomic aberrations in 235 HCC patients. Liver cancer candidate genes were identified from both sexes and genotypes. Interestingly, transposon insertions in the epidermal growth factor receptor (Egfr) gene were common in SB-induced liver tumors from male mice (10/10, 100%) but infrequent in female mice (2/9, 22%). Human single-nucleotide polymorphism data confirmed that polysomy of chromosome 7, locus of EGFR, was more frequent in males (26/62, 41%) than females (2/27, 7%) (P = 0.001). Gene expression-based Poly7 subclass patients were predominantly male (9/9) compared with 67% males (55/82) in other HCC subclasses (P = 0.02), and this subclass was accompanied by EGFR overexpression (P < 0.001). Conclusion: Sex bias occurrence of HCC associated with EGFR was confirmed in experimental animals using the SB transposon system in a reverse genetic approach. This study provides evidence for the role of EGFR in sex bias occurrences of liver cancer and as the driver mutational gene in the Poly7 molecular subclass of human HCC. (HEPATOLOGY 2013) © 2012 American Association for the Study of Liver Diseases.

Tarocchi M.,Mount Sinai School of Medicine | Tarocchi M.,University of Florence | Hannivoort R.,Mount Sinai School of Medicine | Hannivoort R.,University of Groningen | And 11 more authors.
Hepatology | Year: 2011

Inactivation of KLF6 is common in hepatocellular carcinoma (HCC) associated with hepatitis C virus (HCV) infection, thereby abrogating its normal antiproliferative activity in liver cells. The aim of the study was to evaluate the impact of KLF6 depletion on human HCC and experimental hepatocarcinogenesis in vivo. In patients with surgically resected HCC, reduced tumor expression of KLF6 was associated with decreased survival. Consistent with its role as a tumor suppressor, KLF6+/- mice developed significantly more tumors in response to the chemical carcinogen diethyl nitrosamine (DEN) than wild-type animals. Gene expression signatures in both surrounding tissue and tumors of KLF6+/- mice closely recapitulated those associated with aggressive human HCCs. Expression microarray profiling also revealed an increase in Mdm2 mRNA in tumors from KLF6+/- compared with KLF6+/+ mice, which was validated by way of quantitative real-time polymerase chain reaction and western blot analysis in both human HCC and DEN-induced murine tumors. Moreover, chromatin immunoprecipitation and cotransfection assays established the P2 intronic promoter of Mdm2 as a bona fide transcriptional target repressed by KLF6. Whereas KLF6 overexpression in HCC cell lines and primary hepatocytes led to reduced MDM2 levels and increased p53 protein and transcriptional activity, reduction in KLF6 by small interfering RNA led to increased MDM2 and reduced p53. Conclusion: Our findings indicate that KLF6 deficiency contributes significantly to the carcinogenic milieu in human and murine HCC and uncover a novel tumor suppressor activity of KLF6 in HCC by linking its transcriptional repression of Mdm2 to stabilizing p53. © 2011 American Association for the Study of Liver Diseases.

Discover hidden collaborations