Kōbe-shi, Japan
Kōbe-shi, Japan

Time filter

Source Type

Maruya J.,Nara Women's University | Maruya J.,Osaka University | Maruya J.,Transgenic Inc. | Saeki K.,Nara Women's University
Plant and Cell Physiology | Year: 2010

Establishment of rhizobiumlegume symbiosis requires a series of mutual authentication, which might involve bacterial evasion of host defense. One such evasion-related genes is Sinorhizobium meliloti bacA that is essential for bacteroid formation. BacA is a transmembrane protein highly similar to Escherichia coli SbmA, a predicted transporter, and has homologs even in animal pathogens, such as Brucella abortus in which the homolog contributes to effective survival in host macrophages. Despite such a significance in hostmicrobe interactions, studies on rhizobial BacA have been mostly performed with the Medicago-Sinorhizobium model system that forms indeterminate cylindrical nodules. Since Lotus japonicus-Mesorhizobium loti constitutes another model system that forms determinate globular nodules, we genetically analyzed the bacA homolog with the locus tag mlr7400 in M. loti MAFF303099. We found that the mlr7400-null mutant ML7400DK was able to establish quasi-healthy symbiosis with the Lotus plant with 5080 nitrogen-fixing capacity. This dispensability for symbiosis was in contrast to the indispensability of S. meliloti BacA for symbiosis. However, free-living phenotypes of ML7400DK paralleled those of known bacA mutants, i.e. ML7400DK showed decreased sensitivity to the antibiotics bleomycin and gentamicin as well as increased sensitivity to membrane-disturbing reagents such as SDS. Conservation of the free-living function between Mlr7400 protein and S. meliloti BacA was further confirmed by heterologous complementation experiments. Although simple introduction of mlr7400 into the S. meliloti bacA mutant did not increase the symbiotic capacity at all, a significant but marginal increase was obtained when mlr7400 was fused to the S. meliloti bacA promoter. These findings might indicate currently progressing evolutionary specialization among BacASbmA proteins. © 2010 The Author.


Yi C.,Georgetown University | Shen Z.,University of Pennsylvania | Stemmer-Rachamimov A.,Massachusetts General Hospital | Dawany N.,Wistar Institute | And 9 more authors.
Science Signaling | Year: 2013

The Hippo-Yap signaling pathway regulates a number of developmental and adult cellular processes, including cell fate determination, tissue growth, and tumorigenesis. Members of the scaffold protein angiomotin (Amot) family interact with several Hippo pathway components, including Yap (Yes-associated protein), and either stimulate or inhibit Yap activity. We used a combination of genetic, biochemical, and transcriptional approaches to assess the functional consequences of the Amot-Yap interaction in mice and in human cells. Mice with a liver-specific Amot knockout exhibited reduced hepatic "oval cell" proliferation and tumorigenesis in response to toxin-induced injury or when crossed with mice lacking the tumor suppressor Nf2. Biochemical examination of the Amot-Yap interaction revealed that the p130 splicing isoform of Amot (Amot-p130) and Yap interacted in both the cytoplasm and nucleus, which involved binding of PPxY and LPxY motifs in Amot-p130 to WW domains of Yap. In the cytoplasm, Amotp130 prevented the phosphorylation of Yap by blocking access of the WW domains to the kinase Lats1. Within the nucleus, Amot-p130 was associated with the transcriptional complex containing Yap and Teads (TEA domain family members) and contributed to the regulation of a subset of Yap target genes, many of which are associated with tumorigenesis. These findings indicated that Amot acts as a Yap cofactor, preventing Yap phosphorylation and augmenting its activity toward a specific set of genes that facilitate tumorigenesis. Copyright © 2008 by the American Association for the Advancement of Science.


Mongini P.K.A.,Feinstein Institute for Medical Research | Kramer J.M.,Feinstein Institute for Medical Research | Ishikawa T.-O.,University of California at Los Angeles | Ishikawa T.-O.,TransGenic Inc. | And 2 more authors.
Clinical Immunology | Year: 2014

Sjogren's syndrome (SS) is characterized by salivary gland leukocytic infiltrates and impaired salivation (xerostomia). Cox-2 (Ptgs2) is located on chromosome 1 within the span of the Aec2 region. In an attempt to demonstrate that COX-2 drives antibody-dependent hyposalivation, NOD. B10 congenic mice bearing a Cox-2flox gene were generated. A congenic line with non-NOD alleles in Cox-2-flanking genes failed manifest xerostomia. Further backcrossing yielded disease-susceptible NOD. B10 Cox-2flox lines; fine genetic mapping determined that critical Aec2 genes lie within a 1.56 to 2.17. Mb span of DNA downstream of Cox-2. Bioinformatics analysis revealed that susceptible and non-susceptible lines exhibit non-synonymous coding SNPs in 8 protein-encoding genes of this region, thereby better delineating candidate Aec2 alleles needed for SS xerostomia. © 2014 Elsevier Inc.


Gauger K.J.,Pioneer Valley Life science Institute | Gauger K.J.,University of Massachusetts Amherst | Shimono A.,TransGenic Inc | Crisi G.M.,Baystate Medical Center | And 2 more authors.
BMC Developmental Biology | Year: 2012

Background: Secreted frizzled-related proteins (SFRPs) are a family of proteins that block the Wnt signaling pathway and loss of SFRP1 expression is found in breast cancer along with a multitude of other human cancers. Activated Wnt signaling leads to inappropriate mammary gland development and mammary tumorigenesis in mice. When SFRP1 is knocked down in immortalized non-malignant mammary epithelial cells, the cells exhibit a malignant phenotype which resembles the characteristics observed in metastatic breast cancer stem-like cells. However, the effects of SFRP1 loss on mammary gland development in vivo are yet to be elucidated. The work described here was initiated to investigate the role of SFRP1 in mammary gland development and whether SFRP1 / mice exhibit changes in mammary gland morphology and cell signaling pathways shown to be associated with SFRP1 loss in vitro. Results: 10 week old nulliparous SFRP1 / mammary glands exhibited branching with clear lobulo-alveolar development, which normally only occurs in hormonally stimulated mid-pregnant wt mammary glands. Explant cultures of SFRP1 / mammary glands display increased levels of a well known Wnt signaling target gene, Axin2. Histomorphologic evaluation of virgin glands revealed that by 10 weeks of age, the duct profile is markedly altered in SFRP1 / mice showing a significantly higher density of ducts with distinct alveoli present throughout the mammary gland, and with focal ductal epithelial hyperplasia. These findings persist as the mice age and are evident at 23 weeks of age. Changes in gene expression, including c-Myc, TGF-2, Wnt4, RANKL, and Rspo2 early in mammary gland development are consistent with the excessive hyper branching phenotype. Finally, we found that loss of SFRP1 significantly increases the number of mammary epithelial cells capable of mammosphere formation. Conclusions: Our study indicates that SFRP1 gene is critical for maintaining proper mammary gland development, and that reduced levels of SFRP1 results in hyperplastic lesions and its loss may be a critical event in cancer initiation. © 2012 Gauger et al.; licensee BioMed Central Ltd.


Araki Y.,Hiroshima University | Hamafuji T.,Transgenic Inc | Noguchi C.,Hiroshima University | Shimizu N.,Hiroshima University
PLoS ONE | Year: 2012

We previously found that plasmids bearing a mammalian replication initiation region (IR) and a nuclear matrix attachment region (MAR) efficiently initiate gene amplification and spontaneously increase their copy numbers in animal cells. In this study, this novel method was applied to the establishment of cells with high recombinant antibody production. The level of recombinant antibody expression was tightly correlated with the efficiency of plasmid amplification and the cytogenetic appearance of the amplified genes, and was strongly dependent on cell type. By using a widely used cell line for industrial protein production, CHO DG44, clones expressing very high levels of antibody were easily obtained. High-producer clones stably expressed the antibody over several months without eliciting changes in both the protein expression level and the cytogenetic appearance of the amplified genes. The integrity and reactivity of the protein produced by this method was fine. In serum-free suspension culture, the specific protein production rate in high-density cultures was 29.4 pg/cell/day. In conclusion, the IR/MAR gene amplification method is a novel and efficient platform for recombinant antibody production in mammalian cells, which rapidly and easily enables the establishment of stable high-producer cell clone. © 2012 Araki et al.


Sugiyama Y.,University of Sydney | Shelley E.J.,University of Sydney | Wen L.,University of Sydney | Stump R.J.W.,University of Sydney | And 3 more authors.
Developmental Biology | Year: 2013

During eye lens development, regulation of Wnt/β-catenin signaling is critical for two major processes: initially it must be silent in the lens placode for lens development to proceed, but subsequently it is required for maintenance of the lens epithelium. It is not known how these different phases of Wnt/β-catenin activity/inactivity are regulated. Secreted frizzled related protein-2 (Sfrp2), a putative Wnt-Fz antagonist, is expressed in lens placode and in lens epithelial cells and has been put forward as a candidate for regional Wnt/β-catenin pathway regulation. Here we show its closely-related isoform, Sfrp1, has a complimentary pattern of expression in the lens, being absent from the placode and epithelium but expressed in the fibers. As mice with single knockouts of Sfrp1 or Sfrp2 had no defects in lens formation, we examined lenses of Sfrp1 and Sfrp2 double knockout (DKO) mice and showed that they formed lens placode and subsequent lens structures. Consistent with this we did not observe ectopic TCF/Lef activity in lens placode of DKOs. This indicates that Sfrp1 and Sfrp2 individually, or together, do not constitute the putative negative regulator that blocks Wnt/β-catenin signaling during lens induction. In contrast, Sfrp1 and Sfrp2 appear to have a positive regulatory function because Wnt/β-catenin signaling in lens epithelial cells was reduced in Sfrp1 and Sfrp2 DKO mice. Lenses that formed in DKO mice were smaller than controls and exhibited a deficient epithelium. Thus Sfrps play a role in lens development, at least in part, by regulating aspects of Wnt/β-catenin signaling in lens epithelial cells. © 2013 Elsevier Inc.


Patent
National Cancer Center and Trans Genic Inc. | Date: 2011-09-09

An antibody against mutant -actinin-4 having an amino acid sequence with at least one amino acid residue substitution in the region between position 245 and 263 in the amino acid sequence of -actinin-4, wherein the antibody recognizes all or a part of the substituted amino acid residue(s) in the region.


Patent
Trans Genic Inc. and National Cancer Center | Date: 2014-07-16

An antibody against mutant -actinin-4 having an amino acid sequence with at least one amino acid residue substitution in the region between position 245 and 263 in the amino acid sequence of -actinin-4, wherein the antibody recognizes all or a part of the substituted amino acid residue(s) in the region.


Patent
Trans Genic Inc. and Kumamoto University | Date: 2015-02-04

The present invention provides embryonic stem cells obtainable from an embryo of an immunodeficient mouse which is deficient in both Rag2 and Jak3 genes by culture in the presence of a GSK3 inhibitor and an MEK inhibitor, as well as a transgenic mouse, which is created with the use of these embryonic stem cells.


Patent
Trans Genic Inc. and Kumamoto University | Date: 2012-03-27

The present invention provides embryonic stem cells obtainable from an embryo of an immunodeficient mouse which is deficient in both Rag2 and Jak3 genes by culture in the presence of a GSK3 inhibitor and an MEK inhibitor, as well as a transgenic mouse, which is created with the use of these embryonic stem cells.

Loading Transgenic Inc. collaborators
Loading Transgenic Inc. collaborators