Entity

Time filter

Source Type

Torrance, CA, United States

Kenney J.B.,Toyota USA
Proceedings of the IEEE | Year: 2011

Wireless vehicular communication has the potential to enable a host of new applications, the most important of which are a class of safety applications that can prevent collisions and save thousands of lives. The automotive industry is working to develop the dedicated short-range communication (DSRC) technology, for use in vehicle-to-vehicle and vehicle-to-roadside communication. The effectiveness of this technology is highly dependent on cooperative standards for interoperability. This paper explains the content and status of the DSRC standards being developed for deployment in the United States. Included in the discussion are the IEEE 802.11p amendment for wireless access in vehicular environments (WAVE), the IEEE 1609.2, 1609.3, and 1609.4 standards for Security, Network Services and Multi-Channel Operation, the SAE J2735 Message Set Dictionary, and the emerging SAE J2945.1 Communication Minimum Performance Requirements standard. The paper shows how these standards fit together to provide a comprehensive solution for DSRC. Most of the key standards are either recently published or expected to be completed in the coming year. A reader will gain a thorough understanding of DSRC technology for vehicular communication, including insights into why specific technical solutions are being adopted, and key challenges remaining for successful DSRC deployment. The U.S. Department of Transportation is planning to decide in 2013 whether to require DSRC equipment in new vehicles. © 2006 IEEE. Source


Patent
Toyota USA and Ericsson AB | Date: 2012-03-13

An on-demand method of routing data between a plurality of local peer groups (LPG) of plural moving nodes comprises transmitting a route request message from a source node, relaying the route request message to a native boundary node; forwarding the route request message to a foreign boundary node, determining if the destination node is within an LPG for the foreign boundary node; relaying the route request message to another boundary node if the destination node is not within the LPG, relaying the route request message to the destination node if the destination node is within the LPG, receiving the routing request message at the destination node, transmitting a routing response to the source node, relaying the routing response to the source node through a path discovered by the route request, receiving the routing response at the source node, and transmitting the data, upon receipt of the routing response.


Patent
Toyota USA and Ericsson AB | Date: 2011-04-13

Network architecture configured for open communication between a plurality of sub-networks. Each of the plurality of sub-networks has a different routable network addressing scheme. The architecture includes at least one broker node adapted to communicate using at least two different routable network addressing schemes. The broker node comprises an identification management module configured to collect peer-application addresses for nodes currently accessing a specific application, the peer-application addresses being associated with a specific application, an address resolution module configured to map each of the peer-application addresses to a sub-network specific routable network address and a network coordination module configured to monitor and coordinate sub-network communication capabilities between the broker node and at least one other broker node and elect a primary broker node for each sub-network which the broker node and at least one other broker node is capable of communication.


Patent
Toyota USA and Ericsson AB | Date: 2014-01-10

Network architecture configured for open communication between a plurality of sub-networks. Each of the plurality of sub-networks has a different routable network addressing scheme. The architecture includes at least one broker node adapted to communicate using at least two different routable network addressing schemes. The broker node comprises an identification management module configured to collect peer-application addresses for nodes currently accessing a specific application, the peer-application addresses being associated with a specific application, an address resolution module configured to map each of the peer-application addresses to a sub-network specific routable network address and a network coordination module configured to monitor and coordinate sub-network communication capabilities between the broker node and at least one other broker node and elect a primary broker node for each sub-network which the broker node and at least one other broker node is capable of communication.


Patent
Ericsson AB and Toyota USA | Date: 2014-07-28

An open communication method between at least two sub-networks using a broker node. Each of the sub-networks has a different routable network addressing scheme. The method comprises receiving a packet for a specific application, the packet includes an application identifier, determining if the packet is to be relayed to another of the at least two sub-network based upon the application identifier, determining if a node receiving the packet is a broker node, relaying the packet to a broker node if not a broker node and forwarding, by the broker node, the packet to at least one node in another of the at least two sub-network. The node generating the packet is configured to communicate using a first of the at least two sub-networks. A broker node is configured for communicating using at least two of the at least two sub-network via a corresponding routable network addressing schemes for each of the sub-networks.

Discover hidden collaborations