Time filter

Source Type

De La Maria C.G.,University of Barcelona | Cervera C.,University of Barcelona | Pericas J.M.,University of Barcelona | Castaneda X.,University of Barcelona | And 35 more authors.
PLoS ONE | Year: 2015

This study describes coagulase-negative staphylococcal (CoNS) infective endocarditis (IE) epidemiology at our institution, the antibiotic susceptibility profile, and the influence of vancomycin minimum inhibitory concentration (MIC) on patient outcomes. One hundred and three adults with definite IE admitted to an 850-bed tertiary care hospital in Barcelona from 1995-2008 were prospectively included in the cohort. We observed that CoNS IE was an important cause of community-acquired and healthcare-associated IE; one-third of patients involved native valves. Staphylococcus epidermidis was the most frequent species, methicillin-resistant in 52% of patients. CoNS frozen isolates were available in 88 patients. Vancomycin MICs of 2.0 μg/mL were common; almost all cases were found among S. epidermidis isolates and did not increase over time. Eighty-five patients were treated either with cloxacillin or vancomycin: 38 patients (Group 1) were treated with cloxacillin, and 47 received vancomycin; of these 47, 27 had CoNS isolates with a vancomycin MIC <2.0 μg/mL (Group 2), 20 had isolates with a vancomycin MIC ≥2.0 μg/mL (Group 3). One-year mortality was 21%, 48%, and 65% in Groups 1, 2, and 3, respectively (P=0.003). After adjusting for confounders and taking Group 2 as a reference, methicillin-susceptibility was associated with lower 1-year mortality (OR 0.12, 95% CI 0.02-0.55), and vancomycin MIC ≥2.0 μg/mL showed a trend to higher 1-year mortality (OR 3.7, 95% CI 0.9-15.2; P=0.069). Other independent variables associated with 1-year mortality were heart failure (OR 6.2, 95% CI 1.5-25.2) and pacemaker lead IE (OR 0.1, 95%CI 0.02-0.51). In conclusion, methicillin-resistant S.epidermidis was the leading cause of CoNS IE, and patients receiving vancomycin had higher mortality rates than those receiving cloxacillin; mortality was higher among patients having isolates with vancomycin MICs ≥2.0 μg/mL. © 2015 García de la Mària et al.

Miro J.M.,University of Barcelona | Entenza J.M.,University of Lausanne | Del Rio A.,University of Barcelona | Velasco M.,Hospital Universitario La Paz | And 25 more authors.
Antimicrobial Agents and Chemotherapy | Year: 2012

We describe 3 patients with left-sided staphylococcal endocarditis (1 with methicillin-susceptible Staphylococcus aureus [MSSA] prosthetic aortic valve endocarditis and 2 with methicillin-resistant S. aureus [MRSA] native-valve endocarditis) who were successfully treated with high-dose intravenous daptomycin (10 mg/kg/day) plus fosfomycin (2 g every 6 h) for 6 weeks. This combination was tested in vitro against 7 MSSA, 5 MRSA, and 2 intermediately glycopeptide-resistant S. aureus isolates and proved to be synergistic against 11 (79%) strains and bactericidal against 8 (57%) strains. This combination deserves further clinical study. Copyright © 2012, American Society for Microbiology. All Rights Reserved.

Del Rio A.,University of Barcelona | Garcia-de-la-Maria C.,University of Barcelona | Entenza J.M.,University of Lausanne | Gasch O.,Autonomous University of Barcelona | And 27 more authors.
Antimicrobial Agents and Chemotherapy | Year: 2016

The urgent need of effective therapies for methicillin-resistant Staphylococcus aureus (MRSA) infective endocarditis (IE) is a cause of concern. We aimed to ascertain the in vitro and in vivo activity of the older antibiotic fosfomycin combined with different beta-lactams against MRSA and glycopeptide-intermediate-resistant S. aureus (GISA) strains. Time-kill tests with 10 isolates showed that fosfomycin plus imipenem (FOF+IPM) was the most active evaluated combination. In an aortic valve IE model with two strains (MRSA-277H and GISA-ATCC 700788), the following intravenous regimens were compared: fosfomycin (2 g every 8 h [q8h]) plus imipenem (1 g q6h) or ceftriaxone (2 g q12h) (FOF+CRO) and vancomycin at a standard dose (VAN-SD) (1 g q12h) and a high dose (VAN-HD) (1 g q6h). Whereas a significant reduction of MRSA-227H load in the vegetations (veg) was observed with FOF+IPM compared with VAN-SD (0 [interquartile range [IQR], 0 to 1] versus 2 [IQR, 0 to 5.1] log CFU/g veg; P = 0.01), no statistical differences were found with VAN-HD. In addition, FOF+IPM sterilized more vegetations than VAN-SD (11/15 [73%] versus 5/16 [31%]; P = 0.02). The GISA-ATCC 700788 load in the vegetations was significantly lower after FOF+IPM or FOF+CRO treatment than with VAN-SD (2 [IQR, 0 to 2] and 0 [IQR, 0 to 2] versus 6.5 [IQR, 2 to 6.9] log CFU/g veg; P < 0.01). The number of sterilized vegetations after treatment with FOF+CRO was higher than after treatment with VAN-SD or VAN-HD (8/15 [53%] versus 4/20 [20%] or 4/20 [20%]; P = 0.03). To assess the effect of FOF+IPM on penicillin binding protein (PBP) synthesis, molecular studies were performed, with results showing that FOF+IPM treatment significantly decreased PBP1, PBP2 (but not PBP2a), and PBP3 synthesis. These results allow clinicians to consider the use of FOF+IPM or FOF+CRO to treat MRSA or GISA IE. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

Loading Toxicology Service collaborators
Loading Toxicology Service collaborators