Toxicology Excellence for Risk Assessment

Cincinnati, OH, United States

Toxicology Excellence for Risk Assessment

Cincinnati, OH, United States

Time filter

Source Type

Banda M.,US Toxicology | McKim K.L.,US Toxicology | Haber L.T.,Toxicology Excellence for Risk Assessment | Haber L.T.,University of Cincinnati | And 3 more authors.
Mutation Research - Genetic Toxicology and Environmental Mutagenesis | Year: 2015

This study investigated whether Kras mutation is an early event in the development of lung tumors induced by inhalation of particulate vanadium pentoxide (VP) aerosols. A National Toxicology Program tumor bioassay of inhaled particulate VP aerosols established that VP-induced alveolar/bronchiolar carcinomas of the B6C3F1 mouse lung carried Kras mutations at a higher frequency than observed in spontaneous mouse lung tumors. Therefore, this study sought to: (1) characterize any Kras mutational response with respect to VP exposure concentration, and (2) investigate the possibility that amplification of preexisting Kras mutation is an early event in VP-induced mouse lung tumorigenesis. Male Big Blue B6C3F1 mice (6 mice/group) were exposed to aerosolized particulate VP by inhalation, 6h/day, 5 days/week for 4 or 8 weeks, using VP exposure concentrations of 0, 0.1, and 1mg/m3. The levels of two different Kras codon 12 mutations [GGT→GAT (G12D) and GGT→GTT (G12V)] were measured in lung DNAs by Allele-specific Competitive Blocker PCR (ACB-PCR). For both exposure concentrations (0.1 and 1.0mg/m3) and both time points (4 and 8 weeks), the mutant fractions observed in VP-exposed mice were not significantly different from the concurrent controls. Given that 8 weeks of inhalation of a tumorigenic concentration of particulate aerosols of VP did not result in a significant change in levels of lung Kras mutation, the data do not support either a direct genotoxic effect of VP on Kras or early amplification of preexisting mutation as being involved in the genesis of VP-induced mouse lung tumors under the exposure conditions used. Rather, the data suggest that accumulation of Kras mutation occurs later with chronic VP exposure and is likely not an early event in VP-induced mouse lung carcinogenesis. © 2015.


PubMed | Toxicology Consulting Services, US Toxicology, Toxicology Excellence for Risk Assessment and Exponent, Inc.
Type: | Journal: Mutation research. Genetic toxicology and environmental mutagenesis | Year: 2015

This study investigated whether Kras mutation is an early event in the development of lung tumors induced by inhalation of particulate vanadium pentoxide (VP) aerosols. A National Toxicology Program tumor bioassay of inhaled particulate VP aerosols established that VP-induced alveolar/bronchiolar carcinomas of the B6C3F1 mouse lung carried Kras mutations at a higher frequency than observed in spontaneous mouse lung tumors. Therefore, this study sought to: (1) characterize any Kras mutational response with respect to VP exposure concentration, and (2) investigate the possibility that amplification of preexisting Kras mutation is an early event in VP-induced mouse lung tumorigenesis. Male Big Blue B6C3F1 mice (6 mice/group) were exposed to aerosolized particulate VP by inhalation, 6h/day, 5 days/week for 4 or 8 weeks, using VP exposure concentrations of 0, 0.1, and 1 mg/m(3). The levels of two different Kras codon 12 mutations [GGT GAT (G12D) and GGT GTT (G12V)] were measured in lung DNAs by Allele-specific Competitive Blocker PCR (ACB-PCR). For both exposure concentrations (0.1 and 1.0mg/m(3)) and both time points (4 and 8 weeks), the mutant fractions observed in VP-exposed mice were not significantly different from the concurrent controls. Given that 8 weeks of inhalation of a tumorigenic concentration of particulate aerosols of VP did not result in a significant change in levels of lung Kras mutation, the data do not support either a direct genotoxic effect of VP on Kras or early amplification of preexisting mutation as being involved in the genesis of VP-induced mouse lung tumors under the exposure conditions used. Rather, the data suggest that accumulation of Kras mutation occurs later with chronic VP exposure and is likely not an early event in VP-induced mouse lung carcinogenesis.


PubMed | Toxicology Excellence For Risk Assessment, RG York and Associates LLC, University of Cincinnati, Summit Toxicology and 2 more.
Type: Journal Article | Journal: Regulatory toxicology and pharmacology : RTP | Year: 2015

Ethanol-based topical antiseptic hand rubs, commonly referred to as alcohol-based hand sanitizers (ABHS), are routinely used as the standard of care to reduce the presence of viable bacteria on the skin and are an important element of infection control procedures in the healthcare industry. There are no reported indications of safety concerns associated with the use of these products in the workplace. However, the prevalence of such alcohol-based products in healthcare facilities and safety questions raised by the U.S. FDA led us to assess the potential for developmental toxicity under relevant product-use scenarios. Estimates from a physiologically based pharmacokinetic modeling approach suggest that occupational use of alcohol-based topical antiseptics in the healthcare industry can generate low, detectable concentrations of ethanol in blood. This unintended systemic dose probably reflects contributions from both dermal absorption and inhalation of volatilized product. The resulting internal dose is low, even under hypothetical, worst case intensive use assumptions. A significant margin of exposure (MOE) exists compared to demonstrated effect levels for developmental toxicity under worst case use scenarios, and the MOE is even more significant for typical anticipated occupational use patterns. The estimated internal doses of ethanol from topical application of alcohol-based hand sanitizers are also in the range of those associated with consumption of non-alcoholic beverages (i.e., non-alcoholic beer, flavored water, and orange juice), which are considered safe for consumers. Additionally, the estimated internal doses associated with expected exposure scenarios are below or in the range of the expected internal doses associated with the current occupational exposure limit for ethanol set by the Occupational Safety and Health Administration. These results support the conclusion that there is no significant risk of developmental or reproductive toxicity from repeated occupational exposures and high frequency use of ABHSs or surgical scrubs. Overall, the data support the conclusion that alcohol-based hand sanitizer products are safe for their intended use in hand hygiene as a critical infection prevention strategy in healthcare settings.


Dourson M.,Toxicology Excellence for Risk Assessment | Reichard J.,Toxicology Excellence for Risk Assessment | Nance P.,Toxicology Excellence for Risk Assessment | Burleigh-Flayer H.,PPG Industries | And 3 more authors.
Regulatory Toxicology and Pharmacology | Year: 2014

1,4-Dioxane is found in consumer products and is used as a solvent in manufacturing. Studies in rodents show liver tumors to be consistently reported after chronic oral exposure. However, there were differences in the reporting of non-neoplastic lesions in the livers of rats and mice. In order to clarify these differences, a reread of mouse liver slides from the 1978 NCI bioassay on 1,4-dioxane in drinking water was conducted. This reread clearly identified dose-related non-neoplastic changes in the liver; specifically, a dose-related increase in the hypertrophic response of hepatocytes, followed by necrosis, inflammation and hyperplastic hepatocellular foci. 1,4-Dioxane does not cause point mutations, DNA repair, or initiation. However, it appears to promote tumors and stimulate DNA synthesis. Using EPA Guidelines (2005), the weight of the evidence suggests that 1,4-dioxane causes liver tumors in rats and mice through cytotoxicity followed by regenerative hyperplasia. Specific key events in this mode of action are identified. A Reference Dose (RfD) of 0.05. mg/kg. day is proposed to protect against regenerative liver hyperplasia based on a benchmark dose (BMD) approach. Based on this RfD, a maximum contaminant level goal of 350. μg/L is proposed using a default relative source contribution for water of 20%. © 2014 Elsevier Inc.


PubMed | EST Inc, PPG Industries and Toxicology Excellence for Risk Assessment
Type: Journal Article | Journal: Regulatory toxicology and pharmacology : RTP | Year: 2014

1,4-Dioxane is found in consumer products and is used as a solvent in manufacturing. Studies in rodents show liver tumors to be consistently reported after chronic oral exposure. However, there were differences in the reporting of non-neoplastic lesions in the livers of rats and mice. In order to clarify these differences, a reread of mouse liver slides from the 1978 NCI bioassay on 1,4-dioxane in drinking water was conducted. This reread clearly identified dose-related non-neoplastic changes in the liver; specifically, a dose-related increase in the hypertrophic response of hepatocytes, followed by necrosis, inflammation and hyperplastic hepatocellular foci. 1,4-Dioxane does not cause point mutations, DNA repair, or initiation. However, it appears to promote tumors and stimulate DNA synthesis. Using EPA Guidelines (2005), the weight of the evidence suggests that 1,4-dioxane causes liver tumors in rats and mice through cytotoxicity followed by regenerative hyperplasia. Specific key events in this mode of action are identified. A Reference Dose (RfD) of 0.05mg/kgday is proposed to protect against regenerative liver hyperplasia based on a benchmark dose (BMD) approach. Based on this RfD, a maximum contaminant level goal of 350g/L is proposed using a default relative source contribution for water of 20%.


Maier A.,University of Cincinnati | Vincent M.J.,Toxicology Excellence for Risk Assessment | Gadagbui B.,Toxicology Excellence for Risk Assessment | Patterson J.,Toxicology Excellence for Risk Assessment | And 4 more authors.
Regulatory Toxicology and Pharmacology | Year: 2014

Despite extensive study, definitive conclusions regarding the relationship between asthma and consumer products remain elusive. Uncertainties reflect the multi-faceted nature of asthma (i.e., contributions of immunologic and non-immunologic mechanisms). Many substances used in consumer products are associated with occupational asthma or asthma-like syndromes. However, risk assessment methods do not adequately predict the potential for consumer product exposures to trigger asthma and related syndromes under lower-level end-user conditions. A decision tree system is required to characterize asthma and respiratory-related hazards associated with consumer products. A system can be built to incorporate the best features of existing guidance, frameworks, and models using a weight-of-evidence (WoE) approach. With this goal in mind, we have evaluated chemical hazard characterization methods for asthma and asthma-like responses. Despite the wealth of information available, current hazard characterization methods do not definitively identify whether a particular ingredient will cause or exacerbate asthma, asthma-like responses, or sensitization of the respiratory tract at lower levels associated with consumer product use. Effective use of hierarchical lines of evidence relies on consideration of the relevance and potency of assays, organization of assays by mode of action, and better assay validation. It is anticipated that the analysis of existing methods will support the development of a refined WoE approach. © 2014 The Authors.


McAvoy D.C.,University of Cincinnati | Pittinger C.A.,Cincinnati Bell | Willis A.M.,Toxicology Excellence for Risk Assessment
Ecotoxicology and Environmental Safety | Year: 2015

The biotransformation of tetrabromobisphenol A (TBBPA) was evaluated in anaerobic digester sludge, soils, and freshwater sediments. In anaerobic digester sludge, TBBPA biotransformed rapidly with a 50% disappearance time (DT50) of 19 days, though little mineralization (1.1%) was observed. In aerobic soils, mineralization of TBBPA ranged from 17.5% to 21.6% with 55.3-83.6% of the TBBPA incorporated into the soils as a non-extractable bound residue. The DT50 for TBBPA in aerobic soils ranged from 5.3 to 7.7 days. In anaerobic soils, 48.3-100% of the TBBPA was incorporated into the soils as non-extractable bound residue with <4% mineralized. The soil fate studies demonstrated extensive incorporation of TBBPA into the solid matrix and this association was related to the amount of organic carbon in the soils (i.e., greater association of TBBPA with soil at higher organic carbon content). In anaerobic sediments the DT50 for TBBPA ranged from 28 to 42 days, whereas in aerobic sediments the DT50 for TBBPA ranged from 48 to 84 days and depended on the initial dose concentration. Most of the TBBPA in the sediment studies was incorporated as a non-extractable bound residue with little mineralization observed. Sediment extracts revealed three unknown biotransformation products and bisphenol A (BPA). These results were consistent with previously published studies where TBBPA biotransformed in anaerobic environments (digester sludge and sediments) by debromination and slowly mineralized in the test environments (anaerobic digester sludge, soils, and freshwater sediments). © 2015 Elsevier Inc.


PubMed | Procter and Gamble, U.S. Environmental Protection Agency and Toxicology Excellence for Risk Assessment
Type: Journal Article | Journal: Environmental toxicology and chemistry | Year: 2016

Web-based Interspecies Correlation Estimation (ICE) is an application developed to predict the acute toxicity of a chemical from 1 species to another taxon. Web-ICE models use the acute toxicity value for a surrogate species to predict effect values for other species, thus potentially filling in data gaps for a variety of environmental assessment purposes. Web-ICE has historically been dominated by aquatic and terrestrial animal prediction models. Web-ICE models for algal species were essentially absent and are addressed in the present study. A compilation of public and private sector-held algal toxicity data were compiled and reviewed for quality based on relevant aspects of individual studies. Interspecies correlations were constructed from the most commonly tested algal genera for a broad spectrum of chemicals. The ICE regressions were developed based on acute 72-h and 96-h endpoint values involving 1647 unique studies on 476 unique chemicals encompassing 40 genera and 70 species of green, blue-green, and diatom algae. Acceptance criteria for algal ICE models were established prior to evaluation of individual models and included a minimum sample size of 3, a statistically significant regression slope, and a slope estimation parameter 0.65. A total of 186 ICE models were possible at the genus level, with 21 meeting quality criteria; and 264 ICE models were developed at the species level, with 32 meeting quality criteria. Algal ICE models will have broad utility in screening environmental hazard assessments, data gap filling in certain regulatory scenarios, and as supplemental information to derive species sensitivity distributions. Environ Toxicol Chem 2016;35:2368-2378. Published 2016 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.


Douron M.,Toxicology Excellence for Risk Assessment
Journal of Toxicology and Environmental Health - Part A: Current Issues | Year: 2010

The existing risk assessment and management model is a general framework that can incorporate the assessment of numerous types of chemicals, such as essential elements. The general nature of the framework, however, often precludes precise statements of risk and only gives assurances of accuracy by way of a judicious use of conservative assumptions. A mode-of-action framework may provide approaches that are both more precise and accurate, and that may be used for characterizing both risk and benefit of essential elements, but such a framework needs to address the differing severity of adverse effects. Current dose-response data gaps often hinder the evaluation of the risk and benefit of several essential elements; however, new modeling methods, such as categorical regression, need to be further explored. Finally, the essentiality of certain elements provides evidence that two thresholds likely exist in an individual for adverse effect, one at low doses for undernutrition, and another at high doses for toxicity, for the element of concern. This evidence may aid in the estimation of such thresholds in populations.


Maier A.,Toxicology Excellence for Risk Assessment | Kohrman-Vincent M.,Toxicology Excellence for Risk Assessment | Hertzberg R.,Emory University | Allen B.,NC Associates | And 2 more authors.
Food and Chemical Toxicology | Year: 2012

Previous risk assessment reviews analyzed the potential for dietary acrylamide to increase breast cancer risk. Here, we critically review acrylamide animal bioassay data on mammary tumors for human relevance. We applied a systematic evaluation using reasonable standards of scientific certainty and a systematic weight of evidence (WOE) approach to evaluate several hypothesized modes of action (MOA), including (1) genotoxicity related to glycidamide formation and oxidative stress, (2) endocrine effects due to age-related hyperprolactinemia or secondary to neurotoxicity, and (3) epigenetic effects. We conclude that the appropriate approach for low-dose extrapolation of the rat mammary tumors can be narrowed to two options: (1) linear low-dose extrapolation (i.e., based on a MOA of mutagenicity from direct DNA interaction) from a point of departure (POD) for the combined incidence of adenomas and adenocarcinomas, since these tumor types are related; or (2) non-linear extrapolation, using uncertainty factors to estimate a Reference Dose (RfD) from a POD for tumor promotion derived using the combined fibroadenoma, adenoma and adenocarcinoma data. Non-linear extrapolation is used in the latter approach because these combined tumor types are unlikely to be exclusively caused by mutagenicity. Comparison of the WOE for each alternative MOA indicates that a non-linear approach (option 2) is more appropriate for evaluation of acrylamide-induced mammary tumors; a linear approach (option 1) is shown for comparison. © 2012 Elsevier Ltd.

Loading Toxicology Excellence for Risk Assessment collaborators
Loading Toxicology Excellence for Risk Assessment collaborators