Entity

Time filter

Source Type


Brambilla G.,Toxicological Chemistry Unit | Testa C.,Laboratory Drug Residues
Chemosphere | Year: 2014

The environmental presence of pharmaceuticals in top soil and in water where extensive animal farming occurs may represent an involuntary source of residues in food that might affect both food safety and food security. We modelled the presence of residues in animal matrices from the inventoried environmental concentration of selected drugs in surface waters (range: 0.1-10 μg L-1) and agriculture soils (range: 1-100 μg kg-1 dry weight), accounting for animal production parameters (i.e., forages, water intake and milk and egg production) and drug pharmacokinetics. The results indicate that the contamination of tetracyclines in top soil may represent a major issue both for the compliance with maximum residue levels in food (100-300 ng g-1) and for the claim of organic products. via surface water, animals may be vulnerable to the intake of anabolics and growth-promoting agents, such as 17-beta estradiol and clenbuterol, only under a worst-case scenario. Their identification, which is currently achievable at a pg g-1 level in animal specimens, is considered proof of illegal treatment and can lead to the prosecution of farmers. The Environmental Quality Standards that have been proposed for priority substances in surface waters may also be considered protective in terms of food security/food safety; however, a broad-spectrum characterisation of drugs within the agriculture context could be envisaged to refine the uncertainties in the risk assessment and for combined intakes. © 2014 Elsevier Ltd. All rights reserved. Source


Cockburn A.,Northumbria University | Brambilla G.,Toxicological Chemistry Unit | Fernandez M.-L.,Instituto Nacional Of Investigacion Y Tecnologia Agraria Y Alimentaria Inia | Arcella D.,Unit on Data Collection and Exposure | And 4 more authors.
Toxicology and Applied Pharmacology | Year: 2013

Nitrite is widely consumed from the diet by animals and humans. However the largest contribution to exposure results from the in vivo conversion of exogenously derived nitrate to nitrite. Because of its potential to cause to methaemoglobin (MetHb) formation at excessive levels of intake, nitrite is regulated in feed and water as an undesirable substance. Forages and contaminated water have been shown to contain high levels of nitrate and represent the largest contributor to nitrite exposure for food-producing animals. Interspecies differences in sensitivity to nitrite intoxication principally result from physiological and anatomical differences in nitrite handling. In the case of livestock both pigs and cattle are relatively susceptible. With pigs this is due to a combination of low levels of bacterial nitrite reductase and hence potential to reduce nitrite to ammonia as well as reduced capacity to detoxify MetHb back to haemoglobin (Hb) due to intrinsically low levels of MetHb reductase. In cattle the sensitivity is due to the potential for high dietary intake and high levels of rumen conversion of nitrate to nitrite, and an adaptable gut flora which at normal loadings shunts nitrite to ammonia for biosynthesis. However when this escape mechanism gets overloaded, nitrite builds up and can enter the blood stream resulting in methemoglobinemia. Looking at livestock case histories reported in the literature no-observed-effect levels of 3.3. mg/kg body weight (b.w.) per day for nitrite in pigs and cattle were estimated and related to the total daily nitrite intake that would result from complete feed at the EU maximum permissible level. This resulted in margins of safety of 9-fold and 5-fold for pigs and cattle, respectively. Recognising that the bulkiness of animal feed limits their consumption, these margins in conjunction with good agricultural practise were considered satisfactory for the protection of livestock health. A human health risk assessment was also carried out taking into account all direct and indirect sources of nitrite from the human diet, including carry-over of nitrite in animal-based products such as milk, eggs and meat products. Human exposure was then compared with the acceptable daily intake (ADI) for nitrite of 0-0.07. mg/kg b.w. per day. Overall, the low levels of nitrite in fresh animal products represented only 2.9% of the total daily dietary exposure and thus were not considered to raise concerns for human health. It is concluded that the potential health risk to animals from the consumption of feed or to man from eating fresh animal products containing nitrite, is very low. © 2010 Elsevier Inc. Source


Brambilla G.,Toxicological Chemistry Unit | D'Hollander W.,University of Antwerp | Oliaei F.,Cambridge Environmental Consulting | Stahl T.,Hessian State Laboratory | Weber R.,POPs Environmental Consulting
Chemosphere | Year: 2015

Perfluorooctanesulfonic acid (PFOS) and related substances have been listed in Annex B of the Stockholm Convention. The implementation requires inventories of use, stockpiles, and environmental contamination including contaminated sites and measures for (risk) reduction and phase out. In most countries monitoring capacity is not available and therefore other approaches for assessment of contaminated sites are needed. Available informations about PFOS contamination in hot spot areas and its bio-accumulation in the food webs have been merged to build up a worst-case scenario We model PFOS transfer from 1 to 100ngL-1 range in water to extensive and free-range food producing animals, also via the spread of contaminated sludges on agriculture soils. The modeling indicates that forages represented 78% of the exposure in ruminants, while soil accounted for >80% in outdoor poultry/eggs and pigs. From the carry-over rates derived from literature, in pork liver, egg, and feral fish computed concentration falls at 101, 28 and 2.7ngg-1, respectively, under the 1ngL-1 PFOS scenario. Assuming a major consumption of food produced from a contaminated area, advisories on egg and fish, supported by good agriculture/farming practices could abate 75% of the human food intake. Such advisories would allow people to become resilient in a PFOS contaminated area through an empowerment of the food choices, bringing the alimentary exposure toward the current Tolerable Daily Intake (TDI) of 150ngkg-1bodyweightd-1 proposed by the European Food Safety Authority (EFSA). © 2014 Elsevier Ltd. Source


Brambilla G.,Istituto Superiore di Sanita | Abate V.,Istituto Superiore di Sanita | Battacone G.,University of Sassari | De Filippis S.P.,Toxicological Chemistry Unit | And 3 more authors.
Science of the Total Environment | Year: 2016

The organic carbon of biosolids from civil wastewater treatment plants binds persistent organic pollutants (POPs), such as polychlorodibenzo -dioxins and -furans (PCDD/Fs), dioxin and non-dioxin -like polychlorobiphenyls (DL and NDL-PCBs), polybrominated diphenyl ethers (PBDEs), and perfluorooctane sulfonic acid (PFOS). The use of such biosolids, derived digestates and composts as top soil improvers (TSIs) may transfer POPs into the food chain. Weevaluated the potential carry-over ofmain bioavailable congeners from amended soil-to-milk of extensive farmed sheep. Such estimates were compared with regulatory limits (food security) and human intakes (food safety). The prediction model was based on farming practices, flocks soil intake, POPs toxicokinetics, and dairy products intake in children, of the Mediterranean area. TSI contamination ranged between 0.20-113 ngWHO-TEQ/kg dry matter for PCDD/Fs and DL-PCBs (N=56), 3.40-616 μg/kg forS6 NDL-PCBs (N=38), 0.06-17.2 and 0.12- 22.3 μg/kg for BDE no. 47 and no. 99, 0.872-89.50 μg/kg for PFOS (N=27). For a 360 g/head/day soil intake of a sheep with an average milk yield of 2.0 kg at 6.5% of fat percentage, estimated soil quality standards supporting milk safety and security were 0.75 and 4.0 ngWHO TEQ/kg for PCDD/Fs and DL-PCBs, and 3.75 and 29.2 μg/kg for S6 NDL-PCBs, respectively. The possibility to use low-contaminated TSIs to maximize agriculture benefits and if the case, to progressively mitigate highly contaminated soils is discussed. © 2015 Elsevier B.V. Source


Herzke D.,High North Research Center on Climate and the Environment | Huber S.,High North Research Center on Climate and the Environment | Bervoets L.,University of Antwerp | D'Hollander W.,University of Antwerp | And 7 more authors.
Environmental Science and Pollution Research | Year: 2013

The human diet is recognised as one possible major exposure route to the overall perfluorinated alkylated substances (PFAS) burden of the human population, resulting directly from contamination of dietary food items, as well as migration of PFAS from food packaging or cookware. Most European countries carry out national monitoring programs (food basket studies) to monitor contamination with pollutants. Usually, for PFASs, non-coordinated approaches are used in Europe, since food basket studies are mainly carried out by national authorities following national requirements and questions, making comparisons between different countries difficult. A harmonised sampling campaign collecting similar food items in a uniform procedure enabling direct comparison between different regions in Europe was designed. We selected four countries (Belgium, Czech Republic, Italy and Norway), representing the four regions of Europe: West, East, South and North. In spring 2010 and 2011, 20 different types of vegetables were sampled in Belgium, Czech Republic, Italy and Norway. Perfluorinated carboxylic acids (PFCAs) were the main group of detected PFASs, with perfluorinated octanoic acid (PFOA) as the most abundant PFCA (with exception of samples from Czech Republic), followed by perfluorinated hexanoic acid and perfluorinated nonanoic acid. Dietary intake estimates for PFOA show only low human exposure due to vegetable consumption for adults and children, mostly governed by high intake of potatoes. © 2013 Springer-Verlag Berlin Heidelberg. Source

Discover hidden collaborations