Toulouse, France

Toulouse 1 University Capitole is located in the heart of the city of Toulouse, in southwestern France. Wikipedia.


Time filter

Source Type

Patent
French National Center for Scientific Research, Montpellier University and Toulouse 1 University Capitole | Date: 2015-01-22

The invention relates to a method for the in vitro diagnosis of prostate cancer in a patient, characterised in that it comprises a step of measuring the expression level of the gene of the cation-independent mannose-6-phosphate receptor (CI-M6PR) in a sample of prostate tissue of the patient, the determination of overexpression of said CI-M6PR gene indicating the presence of prostate cancer in said patient.


Grant
Agency: Cordis | Branch: H2020 | Program: MSCA-RISE | Phase: MSCA-RISE-2015 | Award Amount: 1.33M | Year: 2016

Increasingly challenging global and environmental requirements have resulted in agricultural systems coming under increasing pressure to enhance their resilience capabilities in order to respond to the abrupt changes in resource quality, quantity and availability, especially during unexpected environmental circumstances, such as uncertain weather, pests and diseases, volatile market conditions and commodity prices. Therefore, integrated solutions are necessary to support the whole food agricultural life-cycle value chain. Solutions necessarily must consider the products cycle, as well as each of the value chain stages. Thus, managing risks and the uncertain availability of information will lead farmers to take advantage of these managerial, technical and social based-solutions. This implies the need for innovative technology-based knowledge management system to capture the agricultural information, at a variety of regional locations, in terms of collecting, storing, processing, and disseminating information about uncertain environmental conditions that affect agricultural decision-making production systems. Hence, from the genetic design of the seed, till their planting and harvest processes, RUCAPS provides knowledge of the full agricultural life-cycle based-decision making process to realise the key impacts of every stage of the agriculture-related processes. Therefore, RUCAPS implies the development of a high impact research project in order to integrate real-life based agriculture requirements, alternative land management scenarios, unexpected weather and environmental conditions as well as supporting innovation in the development of agriculture production systems, operations, logistics and supply chain management and the impact of these systems and processes over the end-users and customers. This is to be conceived through the integration of standard and customised solutions for facilitating the collaborative engagement within the agriculture value chain.


The forecasted increase in the number of older people for this century will be accompanied by an increase of those with disabilities. Disability is usually preceded by a condition named frailty that encompasses changes associated with ageing, life styles and chronic diseases. To detect and intervene on it is of outstanding importance to prevent disability, as recovery from disability is unlikely. Recent documents stress the necessity of testing the clinical utility (in terms of risk prediction, diagnosis validity and prognostic significance) of the existing definition of frailty by using combinations of clinical criteria (current definition) and lab Biomarkers (BMs). We will measure the levels of blood and urine omic-based BMs in old people selected from eight cohorts, which include up to 75,000 participants, using standardized and innovative technology (WP1). This figure will allow us to test the research questions with a high power and validity. Combining these lab BMs with clinical BMs, we will develop predictive, diagnostic and prognostic models (WP2), with its modulation by nutrition and physical activity, in general old population and in old people showing some characteristics that confer a high risk for developing frailty (selected cardiovascular risk factors and diseases) (WP4). After that, a selected set of BMs will be validated prospectively (WP3) and assessed to find the best-fitted models (WP4). These models will guide the development of the ready-to-use kits to be implemented in the clinical settings. These kits will be at the center of dissemination and exploitation activities (WP5, WP6). A well-balanced consortium distributed over the individual tasks in the respective work packages will carry it out, with a strong participation of SMEs. In summary, FRAILOMIC is original, relevant, pertinent, feasible, overcome the usual research bottlenecks on Biomarkers, and fits perfectly with the topics addressed by the HEALTH.2012.2.1.1-2 call in human subjects


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: PHC-15-2014 | Award Amount: 6.00M | Year: 2015

Osteoarthritis (OA) is an incurable disease that has evaded pharmacological interference, biologic therapy or surgical intervention to prevent disease progression. Currently, OA is designated the 11th highest contributor (of 291 diseases) of global disability. In the absence of effective treatment options, cellular therapies using mesenchymal stem/stromal cells (MSCs) have emerged as potential candidates to overcome this clinical short-coming. Autologous adipose-derived mesenchymal stromal cells (ASCs) are attractive for cellular therapy given the abundance of tissue, high frequency of MSCs and minimally invasive harvest procedure. The EU consortium ADIPOA has shown in a first in man 2-centre Phase I safety study that intraarticular injection of a single dose of autologous ASCs to the knee (18 patients, 12 month follow-up) was well-tolerated, had no adverse effects, and resulted in an improvement in pain score and functional outcome. ADIPOA2 will deliver a large-scale clinical trial in regenerative medicine for OA. The purpose of the project is to design and implement a phase IIb study to assess the safety and efficacy of autologous (patient-derived) ACSs in the treatment of advanced OA of the knee. The cells will be prepared from samples of adipose tissue harvested from patients by lipoaspiration. ADIPOA2 will comprise a multi-centre, randomized clinical trial comparing culture-expanded, autologous adult ASCs in subjects with knee OA with another widely used therapeutic approach for knee degeneration (injection of Hyaluronan). There are two large elements of the study: (1) the production of consistent batches of high-quality autologous ASCs under GMP-compliant conditions and (2) delivery of these cell doses to patients in a trial which will meet all national and European regulatory and ethical standards and which will have sufficient statistical power to provide an unambiguous and definitive assessment of safety and efficacy.


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: PHC-06-2014 | Award Amount: 3.38M | Year: 2015

Despite the fact that iodine deficiency (ID) can easily be prevented by iodine fortification of table salt, industrial salt and cattle food, Europe belongs to the worst regions in terms of access to iodized salt and is seriously ID, resulting in the perpetuation of the single most important, preventable cause of brain damage. European ID is due to significant heterogeneity in prevention and monitoring programs, leading to inappropriate interventions, increased disease burden, health inequities and increased health care costs. Up to 360 Million European citizens are exposed to ID disorders. An effective European monitoring program is a crucial step towards eradication of ID disorders with significant benefits for European citizens and the sustainability of health care systems. The effects of ID in total cause tremendous, preventable costs in health care systems of affected regions. The overall aim of EUthyroid is to evaluate ID prevention and monitoring programs in 24 European countries, to initiate capacity building for harmonized European ID prevention and monitoring programs, and to disseminate project outcomes for supporting measures on national and EU level in order to eradicate ID disorders in Europe. The project will position itself as international hub of current national initiatives in the attempt to coordinate and support existing national activities. EUthyroid will generate the first harmonized data set of ID resulting in the first valid map of iodine status in Europe. With a dedicated dissemination program about the unfavorable health outcomes of ID, EUthyroid will pave the way for a harmonized EU-wide regulation of iodination, a common approach to iodine and outcome monitoring and establish recommendations for scientists on how to monitor IDD prevention programs. The project aims to make Europe a benchmark for ID disorder prevention worldwide.


Grant
Agency: Cordis | Branch: FP7 | Program: CP-FP | Phase: HEALTH.2013.1.3-3 | Award Amount: 7.70M | Year: 2013

The goal of SYMPATH is to advance clinical development of therapeutic vaccines targeting -synuclein (aSyn)-driven neurodegenerative diseases (ND). It addresses Parkinsons disease (PD) and multiple system atrophy (MSA), two synucleopathies, for which no causal therapy exists. Ultimately, both lead to patient disability and death, which along with patient number (PD) and age of onset (MSA, PD) define their high medical need status. The proposed programme focuses on 2 vaccine candidates, PD01A and PD03A, delivered by the innovative AFFITOME technology. Both are peptide-protein conjugate vaccines and first-in-class candidates. They were selected to elicit antibodies neutralizing aSyn but sparing compensatory -synuclein. Pre-clinical evaluation confirmed their disease-modifying activity in various models. The unprecedented clinical approach, called TANDEM strategy, uses the synergy resulting from applying 2 vaccine candidates in 2 complementary indications linked through their pathology. TANDEM PD/MSA capitalizes on (i) excellent clinical research centres and their associated national/European networks, (ii) platform methods assessing aSyn species as candidate biomarkers and (iii) preliminary clinical experience with PD01A, the first aSyn targeting vaccine ever tested in humans. Its core is formed by 2 phase I studies testing PD01A in MSA and PD03A in PD/MSA. Importantly, trial design (duration, endpoints, vaccine dose and schedule) will ensure collection of initial biomarker data connecting clinical results of PD- and MSA trajectories. SYMPATH defines the logical next development step of both AFFITOPE vaccine candidates for synucleopathies and generates information/material (biobank) rendering them more amenable to rational drug development. Successful completion of the programme promises reaching aSyn pathology with an active vaccine as a causal therapy for PD/MSA, thus advancing one or both candidates as prime targets for product development and investment.


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: PHC-15-2015 | Award Amount: 6.34M | Year: 2015

Stroke is the second leading cause of death in the world population. When not fatal, stroke often results in disability, due to motor and cognitive impairments, and secondary health problems affecting not only patients but also their families. Building on emerging preclinical and pilot clinical evidences, RESSTORE will focus on the clinical assessment of regenerative cell therapy to improve stroke recovery and patients quality of life. RESSTORE European multicentre randomised phase IIb will explore, for the first time, the efficacy (functional recovery) and safety of intravenous infusion of allogenic adipose tissue derived mesenchymal stem cells (ADMSCs) in 400 stroke patients. Therapeutic effects of ADMSCs will be assessed and monitored in patients using clinical rating scales, multimodal MRI and novel blood biomarkers. Additionally, the societal value and cost-effectiveness of ADMSCs-based regenerative therapy will be evaluated through health economics and predictive in silico simulations. Complementary ancillary animal studies will support the clinical trial by defining i) if the treatment response can be further enhanced by intensive rehabilitation, ii) the contribution of co-morbidities and iii) the mechanism(s) underlying the therapeutic effect. The European regenerative therapy capacities (France, Spain, Finland, United Kingdom and Czech Republic), developed in RESSTORE will cover the full value chain in the field (large scale GMP cell production, clinical testing, biomarkers discovery, understanding of the restoring mechanisms, modelling, biobanking, economic studies, exploitation and communication plan). RESSTORE will thus surely contribute, together with the workforce trained in the context of the programme, to improve its public and private (SME) competitiveness and increase the attractiveness of Europe as a reference location to develop and clinically assess new innovative therapeutic options for brain diseases.


Pitie M.,CNRS Coordination Chemistry | Pratviel G.,Toulouse 1 University Capitole
Chemical Reviews | Year: 2010

A study was conducted to demonstrate activation of DNA carbon-hydrogen bonds by metal complexes. It was demonstrated that active species, formed by activation of O 2 or H 2O 2 with metal complexes was divided into three categories. The most commonly used metals in the field of oxygen activation and DNA damage were iron, copper, and manganese. It was also demonstrated that a triple helix strategy was necessary when sequence selective oxidation of a DNA duplex target was desired. Proteins were found to be alternative macromolecules that were able to selectively target large DNA sequences apart from oligonucleotides. A final strategy for targeting a metal complex to bind DNA consisted of the preparation of conjugates with agents able to form a covalent linkage with DNA.

Loading Toulouse 1 University Capitole collaborators
Loading Toulouse 1 University Capitole collaborators