New York, NY, United States
New York, NY, United States

Time filter

Source Type

Patent
Touch Inc and Panel Systems | Date: 2017-01-25

An acoustic touch apparatus is provided that includes a substrate capable of propagating surface acoustic waves, such as Rayleigh-type or Love-type waves. The substrate has a front surface, a back surface, and a curved connecting surface formed between the front surface and the back surface. The apparatus also includes at least one acoustic wave transducer and at least one reflective array, the acoustic wave transducer and the reflective array behind the back surface of the substrate. The acoustic wave transducer is capable of transmitting or receiving surface acoustic waves to or from the reflective array. The reflective array is capable of acoustically coupling the surface acoustic waves to propagate from the back surface and across the front surface via the curved connecting surface. Various types of acoustic touch apparatus with edge sensitive touch functions can be provided, according to specific embodiments.


Patent
Touch Inc | Date: 2016-06-23

A transparent conductive oxide film for sensing deformation has a length, and generates a deformation amount when an external force is applied thereto, so as to change a resistance value of the transparent conductive oxide film. A ratio of the deformation amount to the length ranges from about 510^(5 )to about 3.510^(4), and a rate of change of the resistance value ranges from about 0.01% to about 3%.


Patent
Touch Inc | Date: 2016-07-10

A pressure sensing input equipment includes a substrate, a first surface and a second surface, an electrode layer, and a pressure sensing chip. The first surface and the second surface are disposed oppositely. The first surface includes a pressure sensing region and a non-pressure sensing region, in which the area of the non-pressure sensing region is complementary to the area of the pressure sensing region. The electrode layer includes a plurality of pressure sensing electrodes disposed in the pressure sensing region to detect pressure magnitude. The pressure sensing electrodes include a first end part and a second end part The pressure sensing chip is electrically connected to the pressure sensing electrodes, and the pressure sensing chip determines pressure magnitude by detecting the resistance variation after the pressure sensing electrode was pressured. Such design can achieve double functions that detect touch position and pressure magnitude of the pressure sensing input equipment.


A pressure sensing pattern layer is formed on a substrate and comprises a plurality of pressure sensing electrodes. Each of the pressure sensing electrodes comprises a plurality of protruding portions. The protruding portions are formed from a transparent conductive line which is bent zigzag. Each of the pressure sensing electrodes is electrically connected to a Wheatstone bridge circuit through a first conductive line and a second conductive line. A resistance of each of the pressure sensing electrodes is an element of the Wheatstone bridge circuit. When any of the pressure sensing electrodes is touched a variation of the resistance of the touched pressure sensing electrode is detected by the Wheatstone bridge circuit.


Patent
Touch Inc | Date: 2016-07-10

A pressure sensing input equipment includes a first electrode layer, a second electrode layer, a first substrate, and a pressure sensing chip. The first substrate is disposed between the first electrode layer and the second electrode layer. The first electrode layer includes first pressure sensing electrodes and first axial touch sensing electrodes. The first pressure sensing electrodes and the first axial touch sensing electrodes are alternately arranged and insulated from each other and do not overlap. The first pressure sensing electrodes are applied for detecting pressure magnitude. The first pressure sensing electrodes include a first end part and a second end part. The pressure sensing chip is electrically connected to the pressure sensing electrodes, and the pressure sensing chip determines the pressure magnitude by detecting, the resistance variation of the pressure sensing electrodes after pressured. With such design, the pressure sensing input equipment can achieve better pressure magnitude detection.


Patent
Touch Inc | Date: 2016-07-10

A detection method for enhanced 3D detection module includes a plurality of touch units configured to sense positions of touch points, a plurality of pressure-sensitive units configured to sense pressing forces and a signal processing circuit, the detection method including: providing a touch scanning pulse to the plurality of touch units and providing a pressure scanning pulse to at least two of the pressure-sensitive units; generating touch signals by the plurality of touch units in response to the touch scanning pulse sensing the positions of the touch points and generating a superimposed pressure signal by the at least two of the pressure-sensitive units in response to the pressure scanning pulse sensing the pressing forces; and determining a position and a pressing force value of at least one touch point by the signal processing circuit according to the superimposed pressure signal and the touch signals.


A touch display module having a pressure detection mechanism is provided. The touch display module includes a 3-D (three-dimensional) sensor and a 3-D controller. The 3-D sensor includes touch units and at least one pressure sensing unit. The 3-D controller includes a driver and a driving pulse processor. The driver provides a pressure scan pulse to the pressure sensing unit and a touch scan pulse to the touch units in combination with the driving pulse processor. The present disclosure further provides a driving method corresponding to the touch display module having the pressure detection mechanism including steps of: providing pressure scan pulses to the pressure sensing unit by the driver in combination with the driving pulse processor and providing touch scan pulses to the touch units in combination of the driving pulse processor by the driver.


Patent
Touch Inc | Date: 2016-07-10

The present invention discloses a display device with a three-dimensional input module, and the device includes a pressure sensor, a display module having a position input function, and a common controller. The pressure sensor is used for detecting pressing force values of multiple points in Z direction. The display module having the position input function is disposed on one side of the pressure sensor and used for detecting press positions of multiple points in X direction and Y direction and displaying. The common controller generates pixel-scanning pulses and touch-scanning pulses for the display module having the position input function, and generates pressure-scanning pulses for the pressure sensor to detect multiple input positions and multiple pressing force values corresponding to the multiple input positions. The display device with the three-dimensional input module has advantages of simple hardware design and better noise immunity.


Patent
Touch Inc | Date: 2016-09-23

An acoustic touch apparatus is provided that includes a substrate capable of propagating surface acoustic waves, such as Rayleigh-type or Love-type waves. The substrate has a front surface, a back surface, and a curved connecting surface formed between the front surface and the back surface. The apparatus also includes at least one acoustic wave transducer and at least one reflective array, the acoustic wave transducer and the reflective array behind the back surface of the substrate. The acoustic wave transducer is capable of transmitting or receiving surface acoustic waves to or from the reflective array. The reflective array is capable of acoustically coupling the surface acoustic waves to propagate from the back surface and across the front surface via the curved connecting surface. Various types of acoustic touch apparatus with edge sensitive touch functions can be provided, according to specific embodiments.


A touch panel with a fingerprint identification function includes a cover plate, a mask layer, a flexible substrate, and a fingerprint sensing array. The mask layer is disposed on the cover plate for defining an operating, region and a non-operating, region of the touch panel. The flexible substrate is disposed on the mask layer and at least in the non-operating region. The fingerprint sensing array is directly disposed on the flexible substrate in the non-operating region. Through the configuration that the fingerprint sensing array is disposed on the flexible substrate, the distance between the fingerprint sensing array and a users fingers is reduced, thereby increasing the sensitivity of fingerprint identification.

Loading Touch Inc collaborators
Loading Touch Inc collaborators