Toronto Rehabilitation Institute Toronto

Canada ;, Canada

Toronto Rehabilitation Institute Toronto

Canada ;, Canada
SEARCH FILTERS
Time filter
Source Type

Santiago C.,Sunnybrook Research Institute | Herrmann N.,Sunnybrook Research Institute | Swardfager W.,Sunnybrook Research Institute | Saleem M.,Sunnybrook Research Institute | And 4 more authors.
International Journal of Geriatric Psychiatry | Year: 2017

Objective: Coronary artery disease (CAD) is frequently accompanied by white matter hyperintensities and executive dysfunction. Because acetylcholine is important in executive function, these symptoms may be exacerbated by subcortical hyperintensities (SH) located in cholinergic (CH) tracts. This study investigated the effects of SH on cognitive changes in CAD patients undergoing a 48-week cardiac rehabilitation program. Methods: Fifty patients (age 66.5 ± 7.1 years, 84% male) underwent the National Institute of Neurological Disorders and Stroke - Canadian Stroke Network neurocognitive battery at baseline and 48 weeks. Patients underwent a 48-week cardiac program and completed neuroimaging at baseline. Subcortical hyperintensities in CH tracts were measured using Lesion Explorer. Repeated measures general linear models were used to examine interactions between SH and longitudinal cognitive outcomes, controlling for age, education, and max VO2 change as a measure of fitness. Results: In patients with SH in CH tracts, there was a significant interaction with the Trail Making Test (TMT) part A and part B over time. Patients without SH improved on average 16.6 and 15.0% on the TMT-A and TMT-B, respectively. Patients with SH on average showed no improvements in either TMT-A or TMT-B over time. There were no significant differences in other cognitive measures. Conclusion: These results suggest that CAD patients with SH in CH tracts improve less than those without SH in CH tracts, over 48 weeks of cardiac rehabilitation. Thus, SH in CH tracts may contribute to longitudinal cognitive decline following a cardiac event and may represent a vascular risk factor of cognitive decline. © 2017 The Authors. International Journal of Geriatric Psychiatry Published by John Wiley & Sons Ltd.


PubMed | Toronto Rehabilitation Institute Toronto, University of Toronto, Bloorview Research Institute and Canadian Sports Concussion Project Toronto
Type: | Journal: Frontiers in human neuroscience | Year: 2014

Chronic traumatic encephalopathy (CTE) is described as a slowly progressive neurodegenerative disease believed to result from multiple concussions. Traditionally, concussions were considered benign events and although most people recover fully, about 10% develop a post-concussive syndrome with persisting neurological, cognitive and neuropsychiatric symptoms. CTE was once thought to be unique to boxers, but it has now been observed in many different athletes having suffered multiple concussions as well as in military personal after repeated blast injuries. Much remains unknown about the development of CTE but its pathological substrate is usually tau, similar to that seen in Alzheimers disease (AD) and frontotemporal lobar degeneration (FTLD). The aim of this perspective is to compare and contrast clinical and pathological CTE with the other neurodegenerative proteinopathies and highlight that there is an urgent need for understanding the relationship between concussion and the development of CTE as it may provide a window into the development of a proteinopathy and thus new avenues for treatment.

Loading Toronto Rehabilitation Institute Toronto collaborators
Loading Toronto Rehabilitation Institute Toronto collaborators